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Chapter 1

Graphs

1.1 What is a graph?

If I instruct you to draw a graph, chances are, you would draw a visual representation of a data set, like a
bar chart or an EKG. However, the graphs in this chapter would be different.

Think of a graph as a number of points connected together by lines. More formally, the points are called
nodes and the lines are called edges. Graphs can be used to model problems like the Travelling Salesman1

and the Seven Bridges of Konigsberg2.

There are many types of graphs, most of which have special names which allude to their properties. Types
of graphs are not mutually exclusive, meaning a graph can be classified in a few ways.

Simple graphs are undirected3, have no self loops4 and no more than one edge between any two different
vertices.In a simple graph with p vertices, the degree5 of every vertex is less than p.

A regular graph is one where each vertex has the same number of neighbors, i.e., every vertex has the same
degree. A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k.

A complete graph has each pair of its vertices connected together by an edge. Complete graphs are subsets
of regular graphs as if each pair of vertices are connected together, then the number of connections each
vertex has would be the same.

A path in a graph is a sequence of vertices such that from each of its vertices there is an edge to the next
vertex in the sequence. The first vertex is called the start vertex and the last vertex is called the end vertex.

Other frequently used terms are:

Cycle A cycle is a closed path without self-intersections. Every vertex would have degree of at least two.

Forest A forest is a graph with no cycles.

Tree A tree is a connected graph with no cycles.

1http://en.wikipedia.org/wiki/Travelling_salesman_problem
2http://en.wikipedia.org/wiki/Seven_bridges
3The edges have no specified direction
4No edges from a vertex that leads back to the same vertex
5The degree is the number of vertices a vertex is connected to
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1.2 Representing graphs

Graphs are usually drawn with circles or squares for nodes and lines for edges. In general the layout
of a graph is arbitrary, although it can be made representative of the some property, such as the spatial
coordinates of the vertices.

To implement graph algorithms, you will have to figure out how to represent a graph in the form of a
data structure. But to choose the best data structure, you have to know which operations the graph should
support. To get out of this chicken and egg problem, I am going to use a data structure from Computational
Modeling and Complexity Science by Allen Downey. We will revisit it later to evaluate its pros and cons.

This data structure uses a dictionary with dictionaries nested in it, as shown below. The first dictionary has
keys which correspond to the different vertices. The nested dictionaries’ keys are the vertices to which the
vertex is connected to, and the keys give what edge connects them.

Code Listing 1.1: Example of the Graph data structure

#(C) Allen Downey

{

Vertex('w'): {Vertex('v'): Edge(Vertex('v'),Vertex('w'))},

Vertex('v'): {Vertex('u'): Edge(Vertex('v'),Vertex('u'))},

Vertex('u'): {Vertex('w'): Edge(Vertex('u'),Vertex('w'))},

}

The above code is equivalent to the figure below.

This structure lends itself to easy scalability, where additional functionality can easily scaffold onto.
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There are many methods created for the Graph data structure. They are listed below. Note that this is not
an exhaustive list, as more functions will be added as needed.

• Add vertex Adds a vertex to the graph

• Add edge Adds an edge between two edges

• Get edge Returns the edge between two vertices if it exists.

• Remove edge Removes the edge between two vertices if it exists.

• Vertices Returns a list of the vertices in a graph

• Edges Returns a list of the edges in a graph

• Out vertices Returns a list of the vertices connected to a vertex

• Out edges Returns a list of the edges connected to a vertex

• Add all edges Connects all vertices to each other. Thus a graph of n vertices will have a degree of
n − 1 for all vertices

When considering regular graphs, it is important to note that not all degrees are possible for a particular
number of vertices. An easy rule to follow is to break graphs into those that have an even or an odd degree.
The former can create a regular graph as long as the degree is less than the number of vertices, while the
latter requires that the graph have an even number of vertices(The degree still needs to be less than the
number of vertices). This is summarised in the following figure.

Figure 1.1: The three different cases for regular graphs: a)Odd vertices, even degree b)Even vertices, even
degree c)Even vertices, odd degree

Therefore, when creating an algorithm for generating regular graphs, the number of vertices and degree
need to be checked. If the degree is even, you could traverse a list of all the vertices and create edges to
other edges. At each vertex, the number of edges created should be half the value of the degree6. This
will prevent the creation of duplicate edges. Similarly for odd degrees, the algorithm should begin by
generating a regular graph with a degree one less than the given degree(making the degree even). Then, an
additional edge should be added between half the vertices and the vertices ”across” the graph from them.
An implementation is shown in Figure 1.2.

Another enhancement to the Graph structure would be to give the Graph a string representation(using
Python’s __repr__ method). This would allow multiple graphs with the same structure and labels to be
created. For this to work, a new Vertex should not be created if one of the same name already exists. This

6E.g. for a degree of 4 you would create 2 edges
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Figure 1.2: The algorithm for generating regular graphs of an odd degree. a)Create a regular graph with a
degree one less than desired. b)Connect ”opposite” vertices together.

is a variation of the Singleton pattern7 where we restrict the instantiation of objects to one per label. My
implementation of this is:

Code Listing 1.2: Implementation of the Singleton pattern for the Vertex

#(C) Allen Downey

class Vertex(object):

def __new__(cls, label):

"""if a Vertex with (label) already exists, return

a reference to it; otherwise create a new one (and store

a reference in the cache).

"""

try:

return Vertex.cache[label]

except KeyError:

v = object.__new__(cls, label)

Vertex.cache[label] = v

return v

As mentioned earlier, we are more concerned with simple graphs which have undirected edges. However,
what if we want directed graphs? This would mean we need to tighten our usage of the edges. Currently,
we do not distinguish between the order of which vertices appear in the name of an edge. We could define
it such that an edge is from the first vertex to the second one. We could override the method add_edge to
accomplish this.

Code Listing 1.3: Digraph class based on Graph

#(C) Allen Downey

class Digraph(Graph):

def add_edge(self, e):

"""add (e) to the graph.

If there is already an edge connecting these Vertices,

the new edge replaces it.

"""

7http://en.wikipedia.org/wiki/Singleton_pattern
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v, w = e

self[v][w] = e

To make use of these directed graphs, we can create a few methods to explore them. We can find out which
vertices can be reached from a particular vertex, and which vertices lead to a vertex. An implementation
for both is shown below as in_edges and out_edges.

Code Listing 1.4: Basic methods for digraphs

#(C) Allen Downey

class Digraph(Graph):

def in_vertices(self, v):

"""return the list of vertices that can reach v in one

hop"""

return [d[v][0] for d in self.itervalues() if v in d]

def in_edges(self, v):

"""return the list of edges into v"""

return [d[v] for d in self.itervalues() if v in d]

1.3 Random graphs

A random graph is a graph with edges generated at random. Since there is no particular way to create
random graphs, there exists many different models for creating them. One of the more popular kinds is the
Erdős - Rényi model, denoted G(n, p), which generates graphs with n nodes, where the probability is p that
there is an edge between any two nodes.

An implementation of a random graph is to take an edgeless graph and loop through all vertices. For each
vertex, loop through every other vertex and generate a random number between 0 and 1 for each pair. If
the random number is above p, then create an edge between the two vertices. To keep the graph simple,
there must not be more than one edge between two vertices. The code below is an adaptation of the add all
edges code shown previously.

Code Listing 1.5: Random graph generation code

import random

class RandomGraph(Graph):

def add_random_edges(self, p):

temp = self.vertices()

edges = []

for k1 in range(len(temp)):

for k2 in range(len(temp)):

if k2 > k1:

if random.random() < p:

edges.append(Edge(temp[k1],temp[k2]))

for e in edges:

self.add_edge(e)
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1.4 Connected graphs

A graph is connected if there is a path from every node to every other node.

There is a simple algorithm to check whether a graph is connected. Start at any vertex and conduct a
search, noting every vertex that you can reach. Then check to see whether all vertices are marked. This sort
of search is called a breadth-first-search (BFS).

An implementation of a BFS could be as follows:

1. Start with any vertex and add it to the queue.

2. If it is connected to any unmarked vertices, add them to the queue. Remove this from the queue.

3. Iterate on Step 2 until the queue is empty.

4. Check if all the vertices have been visited.

Code Listing 1.6: Algorithm to check if a graph is connected

#(C) Allen Downey

def bfs(self, s, visit=None):

"""breadth first search"""

# mark all the vertices unvisited

for v in self.vertices():

v.visited = False

# initialize the queue with the start vertex

queue = [s]

while queue:

# get the next vertex

v = queue.pop(0)

# skip it if it's already marked

if v.visited: continue

# mark it visited, then invoke visit

v.visited = True

if visit: visit(v)

# add its out vertices to the queue

queue.extend(self.out_vertices(v))

def isConnected(self):

"""return True if there is a path from any vertex to

any other vertex in this graph; False otherwise"""

v = self.random_vertex()

self.bfs(v)

return False not in [v.visited for v in self]
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The phase change point for random graphs

Figure 1.3: The plot shows the ”phase change” apparent in large graphs. Notice that the change occurs at a
very low probability, 2.8%

1.5 Erdős - Rényi model of random graphs

In the 1960s, Paul Erdős andAfréd Rényi wrote a series of papers introducing their model of random graphs
and studying their properties.

One of their most surprising results is the existence of abrupt changes in the characteristics of random
graphs as random edges are added. They showed that for a number of graph properties there is a threshold
value of the probability p below which the property is rare and above which it is almost certain. This
transition is sometimes called a ’phase change’ by analogy with physical systems that change state at some
critical value of temperature.

To test this, wewill create a large number(1 thousand) of random graphs all of which have a large number of
vertices(1 million) for a certain value of p. We will repeat this at fixed intervals of p, at a resolution of 0.001.
This creates the following figure. Notice the nearly vertical change at around p is 0.03. This means that the
phase change point is at p = 0.028 (I did a bisector search to get this value). If we use mathematical analysis,
we can find that the sharp threshold for the connectivity of the a graph of n vertices with a probability, p, is
at lnn

n . Therefore, the critical threshold would become smaller for larger graphs.

An interesting finding while conducting the experiment was that when the graphs had small numbers
of vertices, the phase change was less abrupt, and was a visible slope for a decent length. For one, the
low number of vertices mean that the error from the random number generator is magnified. Also, the
importance of a single edge existing between two edges is magnified tremendously. If a vertex has 1000000
different vertices to randomly connect to versus having 10 vertices, the probability of it being connected is
much greater.

My implementation of the search algorithm is shown below. It uses the RandomGraph class created earlier
as the test piece, and loops through many different samples of random graphs, checking if they are con-
nected and noting that. The code also plots the data with percentage of connected graphs on the vertical
axis and the probability of edges being connected on the horizontal axis. (Note: This code is for a small
sample and number of vertices.)
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Code Listing 1.7: Algorithm to search for the phase change point

import pylab

import random

from Graphworld import *

def main(script, n='5', *args):

# create n Vertices

n = int(n)

labels = string.lowercase + string.uppercase + string.punctuation

vs = [Vertex(c) for c in labels[:n]]

Result_tally = list()

for r in range(991):

Result_tally.append(0)

def percent(x): return float(x)/1000

Percent = map(percent, range(10,1001))

# create a graph and a layout

vs = [Vertex(c) for c in labels[:60]]

for c in labels[:80]:

for p in Percent:

c = RandomGraph(vs)

c.add_random_edges(p)

if c.isConnected() is True:

Result_tally[Percent.index(p)] = Result_tally[Percent.index(p)] +1

dy = list()

for c in Result_tally:

dy.append(float(c)/100*100)

pylab.plot(Percent, dy, '-r')

pylab.xlabel('Probability')

pylab.ylabel('Percentage of connected graphs (%)')

pylab.title('The phase change point for random graphs')

pylab.show()

1.6 Small world theory

We now know the basics to explore small world theory. This will be given a more vigorous treatment later,
but for now, consider what the phase change means physically. In Stanley Milgram’s famous experiment8 ,
the empirical result that a large group of random people could somehow be connected is surprising, as most
of the people have no direct links with each other. However, as the previous graph shows, if the number of
people being considered is large, there is a good chance that they will be connected as the probability that
they are connected need only to be 2.8%.

1.7 Validity of the simulation

This will be a recurring topic throughout the book. When presented proof of a phenomena derived from
a computer simulation many people have this skepticism about it. They would be much more inclined to
believe an analytical proof which was vigorously done. This skepticism will be discussed in later chapters
as we perform more complex experiments.

For the Erdős -Rényi model of random graphs, it is not a perfect representation of the real world as even
in their analytical proof, they made simplifying assumptions in order to tackle the problem. For one, they

8http://en.wikipedia.org/wiki/Small_world_experiment
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Figure 1.4: The philosophy behind simulations in this book. Diagram adapted from ”Physical Modelling in
MATLAB” by Allen Downey

make the assumption that the probability of an edge existing two vertices to be random and independent
of interaction of other vertices. This is probably not true in reality, but statistically, this assumption can be
made.

Look at the following figure. We generally want to understand a physical phenomenon, and will develop
a model for this through abstraction. This model will put through simulation(or mathematical analysis) in
order to learn more about it. Finally, we will try to validate the simulation results through measurements
or some other mean. This cycle allows us to make predictions about systems without getting to hung up
with details. These skills will be reiterated and reemphasised throughout the book.
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Chapter 2

Analysis of algorithms

Analysis of algorithms is the branch of computer science that studies the performance pf algorithms and is
used and to predict the performance of different algorithms in order to guide program design decisions.

If asked to rate the performance of an algorithm, it would be hard to give it a value. Many factors, including
the architecture of the computer used to execute the algorithm, influence the result. There is not really any
independent metric that can be used.

2.1 Order of growth

We can perform a relative comparison using order of growth analysis. This analysis compares the perfor-
mance of algorithms at large values by noting the leading term in the algorithm. The algorithm with the
larger leading term would take the longest to run.

More formally, an order of growth is a set of functions whose asymptotic growth behaviours is considered
equivalent. A notation called ”Big-Oh notation” is used to quickly summarise the order of growth of a
system. It is important to note that the order of growth of a function is dependent only on the leading term,
i.e. all others can be discarded. If we wanted to be more thorough, we would not end here, but a more
rigorous treatment is best left to its own book.

2.2 Analysis of basic operations

It is most useful for programmers to know the performance of basic operations in programming, thing like
sorting, looping and such. They are used frequently within programs, and knowing the right operation to
use could be a decision made purely on the performance of the algorithms underlying them.

Later we will use lists for our analysis. Common operations for a list are to index it, sort it, append items
and to delete items. Most list operations take a linear time. For instance, using a for loop to loop through a
list would be linear if the body of the loop is constant time.

Sorting is a highly studied field where the speed of the algorithm is can be very important. Just think of
the information on a database being in a giant list which needs to be sorted through to make the database
useful. Many sorts are comparison sorts which uses a single comparison parameter to decide how to sort
elements. This method has fundamental limits and has a typical growth order of nlogn.



12 Chapter 2. Analysis of algorithms

At best, a worst case sort algorithm would have a quadratic order of growth and at best it would have a
linear order of growth. In this context, we can see why simple bubble sort1 would not be ideal as it has on
average a quadratic order of growth. A radix sort2 through, is not a comparison sort, and thus can have a
typical order of growth of O(n · k

s ) where n is the number of items in the list, k is the size of each key, and s
is the chunk size used by the implementation.

Since we brought up radix sorts, it would be wise to discuss stability of sorting algorithms. Most-
Significant-Digit Radix sorts are unstable while Least-Significant-Digit Radix sorts are not. Unstable al-
gorithms result in non deterministic sorted results, as they have particular difficulty when the values they
are comparing are equal. Therefore, when deciding between sort algorithms, the question of stability may
become important.

Lets compare the sorting performance of C and Python. C uses quicksort3 while Python uses mergesort4.
Both have n log n growth on average, but quicksort can result in quadratic growth. The reason this is
brought up, is to point out that different languages have different inherent sorting algorithms, which may
make the difference when choosing between a language to program in5.

2.3 Analysis of search algorithms

We can intuitively tell that different search algorithms would have different orders of growth (That has
been the theme thus far). If we have a sorted list, a simple way to search would be to loop through the
entire list to find a particular value. This has a linear order of growth which is not ideal. A different data
structure would be able to serve us better in searches.

Lets discuss instead a binary search tree6. A binary search tree(BST) is useful as a data structure as it can
implement searching algorithms very efficiently. Look up the Wikipedia page to understand some of the
subsequent syntax. Basically, a BST has a node and a left and right child. The left child is smaller than the
node and the right is greater. Now, the children are also nodes, so that means they have their own children.
This quickly develops into a tree where every value is sorted.

The previous figure is an example of a BST of size 9 and depth 3, with root 8 and leaves 1, 4, 7 and 13.

1http://en.wikipedia.org/wiki/Bubble_sort
2http://en.wikipedia.org/wiki/Radix_sort
3http://en.wikipedia.org/wiki/Quicksort
4http://en.wikipedia.org/wiki/Merge_sort
5One of my professors uses MATLAB for numerical simulations, but lapses into FORTRAN when he has a need for speed.
6http://en.wikipedia.org/wiki/Binary_search_tree
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To implement a BST in Python, we would need to create two new classes, a node class for each node, and a
Bst class for the BST. The node would have four attributes, a left child, right child, key and value. The Bst
would need to have all the usual functionality, adding new nodes, deleting nodes, and searching through
them all.

To add new nodes, we use the following Python code7. Basically, it will traverse downward through the
tree, checking against all the nodes in its path, until it reaches a suitable position to add the new node.

Code Listing 2.1: Add method for BST

class Bst:

def add(self, key, dt):

"""Add a node in tree"""

if self.root == None:

self.root = Node(value = key, data = dt)

self.l.append(self.root)

return 0

else:

self.p = self.root

while True:

if self.p.value > key:

if self.p.lchild == None:

self.p.lchild = Node(value = key, data = dt)

return 0 #success

else:

self.p = self.p.lchild

elif self.p.value == key:

return -1 # value already in tree

else:

if self.p.rchild == None:

self.p.rchild = Node(value = key, data = dt)

return 0 # success

else:

self.p = self.p.rchild

return -2 #should never happen

To delete nodes, again you would traverse the tree, checking the value at each node until reaching the
desired node. Just remember, to replace a node with one of its children if it has any.

Code Listing 2.2: Delete method for BST

class Bst:

def deleteNode(self, key):

"""Deletes node with value == key"""

if self.root.value == key:

if self.root.rchild == None:

if self.root.lchild == None:

self.root = None

else: self.root = self.root.lchild

else:

self.root.rchild.lchild = self.root.lchild

self.root = self.root.rchild

return 1

self.p = self.root

while True:

7http://en.wikipedia.org/wiki/Binary_search_tree
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if self.p.value > key:

if self.p.lchild == None:

return 0 #Not found anything to delete

elif self.p.lchild.value == key:

self.p.lchild = self.proceed(self.p,

self.p.lchild)

return 1

else:

self.p = self.p.lchild

# There's no way self.p.value to be equal to key!

if self.p.value < key:

if self.p.rchild == None:

return 0 #Not found anything to delete

elif self.p.rchild.value == key:

self.p.rchild = self.proceed(self.p,

self.p.rchild)

return 1

else:

self.p = self.p.rchild

return 0

Finally, to search through nodes, you would traverse down the tree until the desired value was reached.

Code Listing 2.3: Search method for BST

class Bst:

def search(self, key):

"""Searches Tree for a key and returns data; if not

found returns None"""

self.p = self.root

if self.p == None:

return None

while True:

# print self.p.value, self.p.data

if self.p.value > key:

if self.p.lchild == None:

return None #Not Found

else:

self.p = self.p.lchild

elif self.p.value == key:

return self.p.data

else:

if self.p.rchild == None:

return None #Not Found

else:

self.p = self.p.rchild

return None #Should never happen

Making a common traverse method that all of the previous methods could have used may be a nice exercise
for the reader.

This implementation of a BST is not too complex and is not the best way to implement a BST. Other variants
of BSTs like Red-Black Trees8 and Treaps9 are known to have a better performance.

8http://en.wikipedia.org/wiki/Red-black_tree
9http://en.wikipedia.org/wiki/Treap
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Note though that one of the miracles of computer science, hashtables10 can implement searches in constant
time, without requiring any sorting. Its pretty amazing.

As a final proof of the performance of an algorithm, we can always empirically determine the order of
growth for some functions. Consider the summing of lists. If one uses a for loop which iterates through
a list, appending it at each cycle, the algorithm would have a quadratic order of growth. However, if one
uses the extend method for lists, one is just adding terms incrementally to the end of the list. The figure
below can show this more clearly. The slope for the left graph is about two and the one on the left is about
1.
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Figure 2.1: Different growths for linear summing algorithms. The left graph has quadratic growth and a
slope of 2 while the right graph has linear growth and a slope of 1.

As a small note, it is useful to use list comprehension to loop through a list and perform operations on it.
Here is the code for the previous list summing example(the linear algorithm).

Code Listing 2.4: Linear list summing algorithm

a = [1,2,3,4]

b = [5,6,7,8]

a.extend([x for x in b]) #Linear order algorithm

10http://en.wikipedia.org/wiki/Hash_table
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Chapter 3

Small world graphs

3.1 Spiral back to graphs

Now that we know about analysing algorithms, lets take a look back at out graph implementation with
new eyes. As Allen Downey’s book shows, the different methods we have used for the graph methods
have different orders or growth. Some of them could be better optimised especially if we expect to use
them for larger graphs with complicated topographies. In the following chapters, we will try to review our
algorithms and data structures to insure that they have low growth orders.

3.2 FIFO implementation

In that vein, we need to develop a FIFO stack. This datastructure may be useful later in implementing
algorithms used for the small graphs.

A FIFO (First In First Out) stack is a datastructure where data can be inserted sequentially, which will be
removed in the sequence that they were inserted. Our goal is to insert and remove data from the FIFO in
constant time. This is a non-trivial task, as most FIFO implementations have a linear order. Double linked
lists can be implemented as a FIFO in Python.

My implementation involves creating two new objects, nodes and the FIFO itself. Think of a double linked
list as a series of nodes with two links. One link is to the next member in the list, while the other is to the
next member in the list.

Code Listing 3.1: Node object for the double linked list

class Node:

def __init__(self, value=None):

self.previous = 0

self.data = value

self.next = 0

The FIFO object collects all these nodes and maintains order within them. As shown in Figure 3.1, the first
node will have its previous link going to O, while the last node will have its next link going to zero. By
knowing this, we are able to keep the list in order. In append, we keep track of the last node in our sequence,
and simply add the node and necessary link when needed. In pop, we pluck out the first node and rewire
the links for the second node, thus making it the new first node. This data structure is now ready to be used
as a FIFO stack.
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Figure 3.1: Illustration of the double linked list. Note that the first node has its previous pointer at 0 and
the last node has its next pointer at 0.

Code Listing 3.2: Double linked list implementation

class FIFO:

"""Implementation of a FIFO using doubly-linked list"""

def __init__(self, value=None):

frst = Node(value)

self.firstNode = frst

self.nextNode = frst

def append(self, value):

node1 = Node(value)

curNode = self.nextNode

node1.previous = curNode

node1.next = curNode.next

curNode.next = node1

self.nextNode = node1

def pop(self):

firstnode = self.firstNode

try:

secondnode = firstnode.next

secondnode.previous = 0

except:

None

try:

self.firstNode = secondnode

except:

None

return firstnode

3.3 Watts and Strogatz

In the 1990s, Watts and Strogatz published a paper which proposed an explanation for the small world phe-
nomenon. They began with the two common known kinds of graphs, regular graphs and random graphs.
Their proposal was that small world graphs existed in between these two extremes, offering interesting
behaviour that neither end did.

They found that many interesting networks that physically exist are actually small world graphs and not
random or regular graphs. Examples from their paper ranged from the power distribution networks in the
US, to the neural network of the nematode worm C. elegans. This shows a certain robustness in their model
as it scales well between very different kinds of networks.
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To make a small world graph, they came up with an algorithm which begins with a regular graph. Arrange
all the ring, and look at the edges connecting successive vertices in the ring. Given a certain probability,
one can rewire these edges. Once all the vertices have been traversed, look at edges that connect vertices
that are two apart in the ring. Do the same few steps repeatedly, for vertices that are further apart, until all
edges in the graph have been reached.

In order to formally definewhat a small world graphwas (Strogatz was amathematician after all) they came
up with two parameters from which to characterize graphs, clustering coefficient, C(p) and average path
length, L(p). These parameters are best described if we imagine our small world graph to be a friendship
network.

C(p) describes how close your friends are to each other. A high C(p) would mean that most of your friends
are friends with each other, thus their is high clustering. L(p) is average number of connections needed for
you to know somebody. It is an average over everyone you could possibly know through your friends and
their friends.

The algorithm for determining the clustering coefficient is not too complicated. From a starting vertex, find
out all the vertices that are connected to it (Use the out vertices method). In this set of vertices, check every

pair of vertices if an edge exists. We know that for n vertices, there can be a maximum of (n)(n−1)
2 edges. If

we take the ratio of number of edges that exist and the number of edges that can exist, we get the clustering
coefficient. Figure 3.2 can help illustrate this.

Figure 3.2: Graphs to illustrate the clustering coefficient.

Code Listing 3.3: Clustering coefficient algorithm for SWGs

def clustering_coefficient(self,k):

vertices = self.vertices()

cluster = list()

for v in vertices:

cluster.append(0)

out_vertices = self.out_vertices(v)

length = len(out_vertices)

for i in range(len(out_vertices)):

for j in range(len(out_vertices)):

if j>=i:

if self.get_edge(out_vertices[i],

out_vertices[j]) is not None:

cluster.append(cluster.pop()+1)

if len(out_vertices)>1:

cluster.append(float(cluster.pop())/..

(length*(length-1)*0.5))

else:

cluster.pop()

return sum(cluster)/len(cluster)
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Determining L(p) is a more difficult process. The challenge is more in implementing an algorithm that is
efficient, rather than coming up with a solution that might work just fine but break with large graphs. A
Dutch computer scientist Edsger Dijkstra, created an algorithm which has a quadratic order of growth.

To implement this, we create a dictionary to store all the distance values of the vertices from each other, a
list of all the vertices we have visited and a queue of all of the vertices to visit. Starting at a vertex, we label
its distance as 0, and all the vertices it is connected to as 1. These vertices get added to the queue. Next,
we return to the queue and remove the first vertex added to it and carry out the same process with a slight
difference. We mark this vertex in the visited list. Now, the distance of the connected vertices will be the
sum of the base vertex and the distance between the vertices (one in this case). This process is repeated
until all the vertices are marked. This will give us a dictionary with the distances of all the vertices from the
starting vertex. We sum this up and average it for the total number of vertices in the graph. Finally, repeat
using all the other vertices as the starting vertex. Sum and average again, and the result is L(p).

We could and should have used the FIFO stack developed earlier in the algorithm. However, we would
need to make the FIFO iterable. Although implementing this in Python would not be difficult, it is an
exercise I leave to the reader. My justification was that the run time of this algorithm was well within my
tolerance, beyond which I would crack down on errant algorithms.

Code Listing 3.4: Average path length algorithm for SWGs

def avg_path_length(self):

cumsum = 0.0

avgPL = 0.0 #Average path length

verts = self.vertices()

numv = len(verts)

for i in range(numv):

queue = []

marked = []

distance = dict()

for a in verts:

if a == verts[i]:

distance[a] = 0

else:

distance[a] = 'Inf'

cumsum += self.one_path_length(verts[i], queue,

marked, distance)

avgPL = cumsum/(numv*numv)

return avgPL

def one_path_length(self, vert, queue, marked, distance):

verts = self[vert].keys()

numvs = len(verts)

curdist = distance[vert]

# puts all of the vertices that the current vertex

# is connected to into the queue if they aren't on

# it yet or aren't on the marked list

for i in range(numvs):

if verts[i] not in queue and verts[i] not in marked:

queue.append(verts[i])

distance[verts[i]] = curdist + 1

if len(queue) > 0:

marked.append(vert)

popped = queue.pop(0)

# if the queue has more, recursive call BFS with

next vertex in queue

if len(queue) > 0:
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return self.one_path_length(popped, queue,

marked, distance, distnum)

else:

return sum(distance.values())

Figure 3.3 illustrates the average path length algorithm. Although it does not really help explain my par-
ticular implementation, it gives an idea how the algorithm results in the correct distance values for the
vertices.

Figure 3.3: The graphs show the different stages in the average path length algorithm. The red circle marks
the node that we are currently at. Step 1 is at the initial vertex, Step 2 at the next one, and Step 5 is at the
last node. (Step 3 and 4 do not cause changes to the distance values marked in red)

In Watts and Strogatz’s 1998 letter to Nature, they used a figure which demonstrates how the two parame-
ters vary with different rewiring probabilities. This is reproduced in Figure 3.4 using the implementations
described in this chapter. The figure is a very close reproduction of their figure, which validates the imple-
mentation above.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability

R
a
ti
o

Small World Graph Properties with n=1000, k=10

 

 

C(p)/C(0)

L(p)/L(0)

Figure 3.4: Reproduction of Watts and Strogatz’s figure which demonstrates that small world graphs have
low path lengths and high clustering coefficients

One lingering question is whether the rewiring process had a significant impact on the nature of the graphs.
This would cast doubt on the completeness of the small world graph theory, as it would proof that the figure
above is the exception, rather than the rule. Using the rewiring algorithm from StanislawAntol’sAdventures
in Modeling, I produced Figure 3.5. It shows the same trends and is effectively identical. This seems to
suggest that mimicking Watts and Strogatz’s algorithm is not essential to demonstrating the behaviour of
small world graphs. Of course, this statement comes with the caveat that both algorithms attemped to
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replicate Watts and Strogatz’s algorithm, and deviations may have been accidental rather than planned
out.
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Figure 3.5: A similar figure but using a different rewiring algorithm. The striking similarity of the this
figure and Figure 3.4 reflects the robustness of the small world graph phenomenon.

3.4 Why do I care?

As alluded to earlier, small world graphs are good models for many physical networks, like the power
distribution network in the US. In 2003 1, there was a massive power failure in the US. A fault in a single
transformer at one node propagated along the network, eventually taking out most of the East Coast.

We could easily model each city (or power station) as a node and the transmission cables as edges2. Small
would graphs are inherently more robust as they have high clustering and low path lengths. Knowing
this, we can modify existing physical networks to become small world networks in order to improve their
robustness. Its almost like having a rule of thumb for networks, do x and y and see higher reliabilities
instantly3.

1http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003
2We would have to extend out implementation of edges to have a length as not all edges would have the same length
3Sounds like a cheesy advertisement as well
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Scale Free Networks

4.1 Zipf’s Law

Zipf’s law describes a relationship between the frequencies and ranks of words in natural languages1. More
specifically, it predicts that the frequency, f of a word with rank r is:

f = c · r−s

where s and c are parameters that depend on the language and text. In order to test this, I downloaded a
copy of Christmas Entertainments by Alice M. Kellogg from gutenberg.net and analysed the frequency of
words that appeared in it. The words were then ranked in terms of decreasing frequency. In order to test
Zipf’s law, I took the logarithm on both sides of the equation to get:

log f = log c − s log r

Therefore, a plot of my empirical results produced Figure 4.1. The result give credence to the validity of
Zipf’s law. Just to be safe, I carried out the same analysis with two other books. I observed that Zipf’s law
still held, as their plots produced straight lines on the loglog scale.

4.2 Cumulative distributions

We know that a cumulative distribution(CD) shows the percentage of values less than or equal to x for a
range that x that sweeps from the smallest value in the set to the highest. To implement a CD(as a new
Python class), I will use the Histogram(Hist) datastructure defined in greenteapress.com/compmod/

Hist.py as the input.

When initialized, the CD will run through a list of all the values in the histogram, creating a separate list
with a running total of the frequency of all the values thus far. A method print_cdf prints out the values
and their corresponding cumulative frequencies which is useful for debugging. There needs to be two lines
per quantity as the values from the histogram are discreet and not continuous.

Another method percentile takes a value and returns the corresponding percentile. This was imple-
mented by using the fact that the list of values is sorted. We first search for the index in the values list

1http://wikipedia.org/wiki/Zipf’s_Law



24 Chapter 4. Scale Free Networks

10
0

10
1

10
2

10
3

10
4

10
5

log r

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
 c

Figure 4.1: The empirical results of frequency analysis of the words in Christmas Entertainments (displayed
in red). It clearly shows a nice linear slope and a y-intercept. For History of the United States by Charles
A. Beard(blue) and the Illustrated History of Furniture by Frederick Litchfield(green), we observe that they all
share a similar slope as they are all in English. Their y-intercepts are different as the styles of the books are
different.

where a value would fit in, then use that index to find the corresponding cumulative frequency in the cu-
mulative frequency list. After dividing by the total frequency of the entire set of values, we will get the
percentile.

Finally, we will need a plot_cdf method which would plot the CD. I should make the dots for each step
distinct, one filled and one empty, but I found that to be unnecessary. For the sizes of the datasets I am
expecting to use the CD for, it would be impossible to see the individual steps without zooming in a fair
amount.

Some attention should be given to the performance of the efficiency of the datastructures used in the CD.
In the respect, percentile was designed to be O(logn) as it used the bisect method to search through
the values list for the needed index value. Everything else in CD is linear in n.

4.3 Closed-form distributions

We have only seen empirical distributions thus far, distributions that are based on empirical observations.
There exists a different kind of distributions called closed-form distributions as they can be expressed by
some kind of closed-form function. For example, the length of time a person is waiting in a line can be
modelled as an exponential distribution2.

Speaking of exponential distributions, its CDF is:

cdf(x) = 1 − e−λx

2http://en.wikipedia.org/wiki/Exponential_distribution
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Now, lets define the complementary distribution (CCDF) to be 1 − cdf(x). If we take the logarithm of both
sides of the CCDF, we will get:

log y = −λx

Therefore, on the log-y scale, we would expect the CCDF to look like a straight line with a slope of −λ. To
prove this, we can use the expovariate function in the random module to generate random variables
from an exponential distribution. For 44 samples from an exponential distribution with a mean of 32.6,
we could create the CDF and CCDF plots in Figure 4.2. The roughness of the curves is a result of the
discretization of the data, as we only had 44 data points for the entire range of values. If we had a larger
sample size, the curves would be smoother
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Figure 4.2: The CDF and CCDF for a sample of 44 from an exponential distribution with mean 32.6. Notice
the straight line in the CCDF which means that it has a constant gradient.

4.4 Pareto distributions

Another interesting closed form distribution is the Pareto distribution. It has been used to describe a variety
of phenomena, from populations of cities, to the distribution of wealth. Its CDF is given by:

1 −

(

x

xm

)

−α

The parameters xm and α determine the scale and shape of the distribution.

Pareto distributions have three interesting properties. Firstly, they have a long, sometimes called heavy tail.
In contrast, normal distributions have weak tails. This can be interpreted as Pareto distributions have many
small values and only a few very large ones. Building on that, another property is their ”scale free” nature.
Typically, bounds of a distribution is about two or three standard deviations away from the mean. Pareto
distributions do not have this sort of range, thus get the name ”scale-free”. Finally, Pareto distributions
shows existence of the 80/20 rule, where 80% of the values are contained within a narrow 20% band3.

The CCDF for a Pareto distribution is given by

y = 1 − cdf(x) ∼

(

x

xm

)

−α

Therefore if we take the log of both sides, wewill get a straight line with slope−α and intercept at−α log xm

3Just think of how 80% of the words in this book is fluff and how 20% of this book takes up 80% of my time to write.



26 Chapter 4. Scale Free Networks

Now that we know this, lets try to make some use of this knowledge. The distribution of populations for
cities and towns could potentially be describedwith a Pareto distribution. The good folks at the U.S. Census
Bureau publish the data on the population of every incorporated city and town in the United States4. Using
the script from greenteapress.com/compmod/populations.py, we can parse the data provided by
the Census Bureau and create a list with all the population values.

Before we proceed(I get that this is a jarring break), we need to add a function quantile to Dist which
will take percentile as a parameter and return the corresponding quantity. This will allow us to find out
what values are at the different percentile values of the distribution. We first multiply the percentile with
the total frequency of the quantities to get the total frequency up to that percentile. Next, use the index
of this value to look for the corresponding quantity in the quantity list. Thus, we we will get the quantity
corresponding to a percentile, the quantile. For our census data, we learn that the median size is 1276, and
the 25th and 75th percentiles are 400 and 5335 respectively.
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Figure 4.3: The CDF and CCDF for the population in the towns and cities in the US. Notice how this
conforms to a power law distribution. Characteristics to look for is the straight line in the loglog plot in the
CCDF and the S shape in the semilog-x plot of the cdf.

In Figure 4.3, I made the cdf and the ccdf of the census data. We can conclude from Figure 4.3 that the
population of towns and cities in the US follows a power law distribution.

4.5 Barabási and Albert

Previously, we have encountered random graphs of the Erdős Rényi variety, and small world graphs of the
Watts and Strogatz. Barabási and Albert (B & A) introduced another kind in their 1999 paper5.

They claim that graph is a more accurate representation of physical phenomena because of two factors of
real networks that it takes into account. Firstly, they allow for the expansion of the network over time,
whereas the size of the network is defined at the start for random graphs and SWGs. This is more dynamic
and may, intuitively make more sense as physical networks(like the nervous system) are always growing.
Secondly, the attachment of new nodes is preferential in B & A graphs, whereas it is random in the others.
Their argument for this is that empirical evidence in real networks points towards this. New webpages
would tend to be linked to more prominent websites, while more obscure ones would less likely be linked
to. Basically, its a situation where the rich get richer.

To prove their ideas, B &A came upwith a formal model which they subjected to computational simulation.
In their model, they started with a network with a small number of vertices, which they then added vertices
to. The new vertices had a probability of Π(ki) = ki/

∑

j kj of being connected to a vertex of degree k. In

4Even Wasilla!
5”Emergence of Scaling in Random Networks” Science
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other words, the degree of a vertex over the total degree of the graph, is the probability of a vertex forming
an edge with a new vertex. We can postulate that as we add more vertices, the existing vertices with high
connectivities would get more new edges, the rich get richer phenomenon.

Figure 4.4: The Pk ccdf of a B & A graph against the degree of its vertices. Notice how the number of
vertices with a large degree is small, while there is a large number of vertices with a small degree. The line
in green is the asymptote of k−γ . It is slightly translated due to some unresolved technical issues.

Using their algorithm, I implemented a B& A graph. Figure 4.4 shows the trend of the vertices and their
degrees. B & A predicted that P (k) is asymptotic to k−γ , therefore, the ccdf of the distribution would be a
straight line, as Figure ?? shows. The algorithm I used is optimised to run faster as the probabilities it looks
for it normalised. For example, when the maximum degree of the graph is 6 and the total degree is 30, it
will generate a random number between 0 and 6/30, thus making it more likely that a random edge would
be created in a cycle.

Code Listing 4.1: Method to add vertices to B & A graphs

class ScaleFreeGraph(SmallWorldGraph):

def __init__(self,mnot,m,t):

"""

Mnot:initial number of vertices,

m:number of edges added at each timestep

t: number of timesteps

"""

vs = [Vertex(str(c)) for c in range(mnot+t)]

SmallWorldGraph.__init__(self, vs)

timesteps = t

mcount = 0

maxk = 0.0; #Maximum degree of a vertex

verts = self.vertices()

while mcount < m: #initial loop to create one highly connected vertex

r = random.choice(verts[:mnot])

e = Edge(r, verts[mnot])

if self.get_edge(r,verts[mnot]) is None:

self.add_edge(Edge(r, verts[mnot]))

mcount +=1

maxk = m

for i in range(2,timesteps+1): #loop through all timesteps

mcount =0

while mcount <m: #loop to make m edges for vertex i

r = random.choice(verts[:mnot+i])
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total = m*(i-1)*2

r_p = float(len(self.out_vertices(r)))/total

r_num = random.uniform(0,maxk/total) #normalisation of the

random number generation

if r_num <r_p:

if self.get_edge(r,verts[mnot+i-1]) is None:

self.add_edge(Edge(r, verts[mnot+i-1]))

mcount += 1

maxk = max(maxk, len(self.out_vertices(r)))

If we look at the small world characteristics of the B & A model, we find that they do not exist. For a graph
following the B & A model and having 1000 vertices, we will end up with an average path length of 17.76
and a clustering coefficient of 0.293. If we scale these numbers, we will get an average path length of 0.280
and a clustering coefficient of 0.976. This corresponds very well to a small world graph.

However if we look at a small world graph from the lens of a B & A graph, we get different results. Looking
at Figure 4.5 we see that it only sort of has the P(k) versus k trend that we seek. There is no power law
relationship evident in the graph.
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Figure 4.5: The Pk ccdf of a SWG graph against the degree of its vertices. The SWG has 1000 vertices with a
p of 0.0075. The trend of P(k) is close to what we expect, as it has the downward slope. However, it not on
a loglog scale. Therefore, the distribution of the P(k) does not follow a power series.

Therefore, it is possible to say that B & A graphs have characteristics of SWGs but SWGs do not have the
characteristics of B & A graphs.

4.6 Wrapping up

You may have noticed that Zipf’s law and the Pareto distribution create very similar plots. This is because
Zipf’s law is an approximation of the Pareto distribution for discrete intervals. If we went through the
derivation for both, you will be able to see their links more readily.
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This section brings an end to our study of graphs. It is interesting to note how we had many different
models for graphs, all which had their separate roots and assumptions. Knowing where these models
were most applicable is all a matter of perspective to me. Depending on the framing of the question, one
model can look superior to the others. For example, in the Watts and Strogatz’s small world graphs, high
clustering happens in a small spatial region, while in B & A graphs, high clustering is evident for vertices
that have been around for a while. Whats to say that the high clustering the the W & S graphs is from some
old vertices (or popular vertices) that have gained a lot of connections. Its all a matter of perspective to me.
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Chapter 5

Cellular Automata

Imagine a line broken up into discrete chunks. Let’s call each chunk an automaton. An automaton is a
”machine” which is able to perform computations. Using simple rules, automata can be used to perform
complex calculations. Since the rules usually do not contain any random elements, they are considered
deterministic. This means, we are able to predict the progression of automata in time, given the initial
conditions.

5.1 Wolfram’s model

Wolfram spent a lot of time exploring one dimensional cellular automata, systematically dividing them up
into four classes:

• Class 1 cellular automata produce trivial results. Irregardless of initial state, the system will evolve
into a unique homogeneous state.

• Class 2 cellular automata have the feature that the effects of particular site values propagates only a
finite distance. Thus a change in the value of a single initial site affects only a finite region of sites
around it.

• Class 3 cellular automata have the property that features will propagate at a finite speed forever, and
therefore affect more and more distant sites as time goes on. They do have the quality that their
features appear random, although they are not really random.

• Class 4 cellular automata have a much greater level of unpredictability, One of its features is that
repeating patterns emerge irregardless of the initial state.

One dimentional CA can exist in three configurations: a finite sequence, a ring, and an infinite sequence.
We will concern ourselves mainly with the ring configuration as it tightly bound.

As mentioned previously, the evolution of a system is governed by rules. If we consider a cellular automa-
ton to be only affected by its immediate neighbours, we could construct a table to map combinations of the
states of the automata to the new state of the automaton. If the cells only have two different states, 0 and 1,
we could create a table as follows:

Previous 111 110 101 100 011 010 001 000
Next 0 0 1 1 0 0 1 0

This rule can be summarised as ”Rule 50” as 00110010 is 50 in binary. Figure 5.1 shows the evolution of
a single cell using Rule 50 over 10 time steps. The triangular shape of the figure is typical for CAs of this
type. Rule 50 is an example of a class 3 CA as the triangular pattern will propogate infinitely in time.
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Figure 5.1: A Rule 50 CA running for 10 timesteps.

5.2 Implementing CAs

A simple way to implement a CA is to use a matrix where the columns represent the CA and the rows repre-
sent the different timesteps. The Numpy package provided a datastructure called an array which provides
precisely that. Using an implemetation created by Downey1, we have a simple method of manipulating
one dimensional CA.

His implementation was made for the finite sequence configuration of CA. This can be easily modified into
the ring configuration using ghost cells. Below is the iterative function he uses to cycle through the CA at
each timestep. By adding a ghost column to the beginning which mirrors the end and a ghost column to
the end which mirrors the beginning, we can continue to use the same step function with a minor change
to the indices used.

Code Listing 5.1: Function to create a new row of CA for a ring configuration

def step(self):

"""execute one time step by computing the next row of the array"""

i = self.next

print i

self.next += 1

self.array[i-1,self.m-1]= self.array[i-1,0]

neighborhood = tuple([self.array[i-1, self.m-2],self.array[i-1, 0],self.array[i-1, 1]])

self.array[i,0] = self.table[neighborhood]

for j in xrange(1,self.m-1):

neighborhood = tuple(self.array[i-1, j-1:j+2])

self.array[i,j] = self.table[neighborhood]

5.3 Randomness

One of the examples of a Class 3 CA is a rule 30 CA. We know from Downey’s book that it can be used as
a pseudo-random number generator(PRNG). This sort of PRNG is effectively random and and can be used
when a random number is needed to be generated.

Another kind of PRNG is a linear congruential generator. It has the form below:

Xn+1 = a(Xn + c)%m

1greenteapress.com/compmod/ca.py
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If we use appropriate values for a, c and m, we have an effectively random number generator. In order
to test this, I plotted the cdf of 100000 successive values from the generator above. If the distribution is
uniform, we can make a claim that the generator is random as it produces values that are well spread out.
As Figure 5.2 shows, the generator produces a dataset which has a uniform distribution. Barring a more
thorough analysis, we can make the claim that it is a good PRNG.
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Figure 5.2: The CDF for 100000 values generated by a LCG with a = 1664525, c = 1013904223, m = 2 ∗ ∗32
and a seed value of 7898979. Since the CDF is a straight line, it is could representing a uniform distribution
of numbers.

We can test the ability of a rule 30 CA in generating random numbers by outputing the center column of
the CA as the CA evolves. The results for running a rule 30 CA on a ring with 300 cells is shown in Figure
5.3. This time we test the least significant 10 bits of the center column (we will have 290 numbers as before
that, the center column is less than 10 bits) for randomness using the STS toolkit from NIST2. I found that
the numbers generated by the CA is essentially random, with an accuracy of 0.0001, which is acceptable.

5.4 Turing Machines and CA

One outcome of class 4 CA being able to result in patterns means that they are said to be Turing complete,
which means that they can compute any computable function. Yes, any computational function. Lets show
some examples first, in order to make this discussion less abstract, lets examine what the outcome of a class
4 CA, a Rule 110 CA, looks like.

We know from Downey’s book that with an initial condition of a single cell, the CA looks like it produces
some patterns but nothing truly meaningful. However, if we have a random initial condition, and let the
CA evolve for 600 timesteps, we get Figure 5.4, which is a lot more interesting.

Perusing the figure, you will be able to notice some distinct features. The repeating structures, some of
which translate diagonally and some of which translate vertically. These structures are sometimes refered
to as spaceships.

2http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
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Figure 5.3: A rule 30 CA run for 300 timesteps. Notice that although there are apparent patterns in the CA,
at a close enough scale, it could be completely random.

We can notice the ability of the CA to perform computation by observing the collisions between different
spaceships. If we imagine the spaceships to be signals and the collisions to be logical operators, we can
begin to imagine a system where the collisions of spaceships becomes analogous to the processing of sig-
nals. This is a powerful result as we can create spaceships that we want, and preplan collisions using the
initial conditions. For instance, using an initial sequence of 0001110111 will result in a spaceship travelling
diagonally to the right.

5.5 Falsifiability

When confronted with a theory that seems to be based on pseudoscience, the supernatural or the divine,
we are confronted with the need to demark them from what we consider real science. This is the essence of
the demarcation problem. Karl Popper thought he had solved the problem when he came up with the idea
of falsifiability.

Falsifiability rests on the idea that there exists an experiment, that would contradict the hypothesis if it
were false. Therefore, if we come up with a theory, and then proposed an experiment that could be used to
contradict the theory, we have come up with a falsifiable theory.

Depending on the goal of your theory, having a unfalsifiable theory might be appealing, as you will never
be proved wrong. However, if you want to use your theory to make predictions about the world, then an
unfalsifiable theory would be useless.

Unfortunately, philosophers are strongly critical of Popper’s philosophy of science, mainly because of Pop-
per’s mistrust of inductive reasoning. Inductive reasoning is the process of reasoning in which the premises
of an argument are believed to support the conclusion but do not entail the premises. It is like saying since
this ice is cold, therefore all ice is cold. Popper’s philosophy prevents this from being accepted as science as
it says nothing about how, in this case, ice could be proven to be not cold. Therefore, as in most phisophical
argument, depending on where you stand on the issue, the argument is either resolved or stuck.
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Figure 5.4: This is a rule 110 CA, with a random initial condition, run for 600 timesteps. Notice how the
noise at the begining evolved into distinct patterns which display repeatable, predictable patterns.
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Chapter 6

Games of Life

Conway’s Game of Life(GoL), is a two dimensional cellular automaton created by the Britishmathematician
John Conway. It is known to result in many interesting patterns, sparking discussion about realism and
instrumentalism.

6.1 Abstract classes

Before we delve into the GoL, lets touch on an important construct in software design, abstract classes. In
the previous chapter, we used pylab to generate figures for us. Since the figures were vector graphics, they
took a long time to render and manipulate. Therefore, it would be nice to have another way of producing
figures. In addition, it would be nicer if the other way had an identical interface to previous way, making it
easy for the user to flip between using the different methods.

Abstract classes provide a means for this, by providing an interface to a class, but leaving the implemen-
tation up in the air. Thus, in our case, we would create a class, Drawer that provided our three main
needs:

• draw : Draw a representation of cellular automaton. This function would have no visible effects.

• show : Display the representation on the screen, if possible.

• save : Save the representation of the CA.

We would then create separate classes which inherit from Drawer, and provide the implementations for
these methods. Python does not enforce the creation of abstract classes, thus it is entirely possible for the
subclasses to modify their interface. Therefore, care must be taken to adhere to the abstract class, as Python
will not call you out if you violate it.

Since we already have an implementation for Drawer using Pylab, we just have to modify it to have the
appropriate interface. Another method to generate images is using the Python Imaging Library (PIL). The
steps for generating images using the PIL is simple:

1. Import Image and ImageDraw

2. Create a new image and specify its size in pixels. It is useful to set a constant size and scale the size of
the individual cells appropriately.



38 Chapter 6. Games of Life

3. Loop through the array containing the cellular automaton and draw rectangles at prescribed intervals
using the ImageDraw.Image.Rectangle method. All that is needed is to specify the the coordi-
nates of the top left and bottom right corners. Crucially, the base image is black in color, thus, draw
rectangles in white when encountering 0s in the array.

Some exceptions need to be made to make sure that the cells created are at least a 2x2 pixel square, in order
to not to break the PIL and create strange images. Saving and showing images is trivial, as the PIL has built
in methods that accomplish this in single lines. Most amazing is that the PIL can save to different filetypes
merely by specifying the appropriate suffix for the filename. Below is my implementation of PILDrawer:

Code Listing 6.1: Implementation of PILDrawer

class PILDrawer(Drawer):

def draw(self,ca):

"""Draw the CA using the PIL"""

l = len(ca.array); w = 2*l+1;

m=0; n=0; boxwidth = 1000/w; boxheight = 500/l;

if boxwidth < 3:

boxwidth = 3

if boxheight < 4:

boxheight = 4

self.image = Image.new("L", (w*boxwidth,l*boxheight))

draw_square = ImageDraw.Draw(self.image).rectangle

for j in ca.array:

m=0

for i in j:

if i == 0:

draw_square(((boxwidth*m,boxheight*n),\

(boxwidth*m+boxwidth,\

boxheight*n+boxheight)),\

fill='white')

m = m+1

n= n+1

def show(self):

"""display the representation on the screen"""

self.image.show()

def save(self,filename):

"""save the representation of the CA in (filename)"""

self.image.save(filename)

6.2 Conway’s GoL

Conway’s GoL exists on a torus, a two dimensional grid which is wrapped in both directions. Each cell
has two states, alive or dead, and eighth neighbours in the cardinal and intercardinal directions. This is
occasionally called a Moore neighbourhood of range 1.

The rules of the GoL are totalistic, and dependant on the state of a cell and its number of live neighbours.
Here are the rules, with a brief logical description for them.

• If a cell is alive, it will die of loneliness if it has fewer than 2 neighbours. Conversely, it will die from
overcrowding if it has more than 3 neighbours. If it has 2 or 3 neighbours, it remains unchanged.
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• If a cell is dead, it will generally lie dead. However, if it has exactly 3 neighbours, it will spring to life.

With this rules, the GoL turned out to be very popular as:

• A small perturbation to the initial conditions yielded surprisingly different behaviour. This hallmark
of chaotic systems will be explored in later sections.

• There are a number of patterns that are stable, either by remaining static, oscillating or translating.
These can be thought of as attractor points in a chaotic system.

• Most significantly, the GoL is Turing complete. This characteristic will be explored further in later
sections.

• Conway’s initial conjecture, that no pattern can grow infinitely, was a challenge taken up by many.
This challenge was met by a team from MIT led by Bill Gosper with his ”Gosper gun”.

• It is now possible to create animations for the GoL using computers, which is much more engaging
than Conway’s original implementation. Animations help reinforce patterns that change in time,
allowing greater exploration of them.

In order to implement a GoL CA, we can essentially use the same datastructure of a one dimensional CA.
The main difference is that the we take the vertical axis to mean another spatial dimension instead of time.
To create a simple method of scrolling through all the cells in the CA, I considered all the peripheral cells to
be ghost cells. Therefore a 20 by 20 array would represent an 18 by 18 CA.

In order to store all this information, I created a new array (labeled newarray) to store the value of the CA
at a timestep. After creating the ghost cells and populating them with the appropriate values, loop through
the CA, and find out the total number of neighbours for each cell. Knowing this, and the state of the cell,
we can use the rules of the GoL to set if the cells are dead or alive. This algorithm can be represented by
Figure 6.1

Figure 6.1: Algorithm for implementing the Game of Life. a)Have an arraywith a layer of ghost cells around
it, with the array having the size of the desired CA. b)Populate the appropriate values into the ghost cells.
c)Count the number of neighbours that each cell in the CA has. d)Using the rules of the GoL, decide if a
cell lives or dies. I labeled the cells that remained alive to be black, the ones which died in red, and the ones
which were resurrected in blue.

Using the show method of whichever subclass of Drawer we use, we can display the CA as it evolves in
time. Now we are all set to explore patterns in the GoL.

6.3 Patterns

Starting from some random initial state, if we leave the game to run, it will generally settle down and
display a few distinct patterns. A lot of time and effort has been put into discovering this patterns and
characterising them. This source1 has a huge lexicon cataloging the different patterns that people have

1http://www.argentum.freeserve.co.uk/lex.htm
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found over the years.

As mentioned previously, most patterns either are still, oscillate or translate. However, there are some
simple patterns aptly called ”Methuselahs2”, which have very long lifespans. Some of them, like the r-
pentomino, can result in 25 different patterns in its lifespan of 1103 steps.

It is pretty tedious to manually enter specific patterns in order to test their evolution. It would be best
to create methods that would create specific patterns given a set of coordinates. This is easy enough to
implement.

To see how a random CA would evolve in time, I created a one, and let it run for 2000 timesteps. The
results, shown in Figure 6.3, is that nearly all of the patterns created were either oscillatory or static. It leads
to the question of if more complex patterns are wanted, whether more specific initial conditions are needed.
I would say that this would be the case, as this would be consistent with other chaotic phenomena. Static
and oscillatory patterns can be strong attractors that are stable, whereas translating and evolving patterns
are unstable. However, it is these unstable patterns that are the most interesting, as they lead to more new
patterns, ”making new life”.

Since Bill Gosper first disproved Conway’s conjecture, we know that it is possible for patterns to exist that
never stabilize. Conway did not design his game in a way that would make his conjecture obviously true
or false. By design, patterns are not easy to find. Different rules for a 2-D CA would yield either trivial or
uninteresting results. Conway thus avoided Wolfram’s Class 1 and Class 2 behaviour (and probably Class
3), by setting the rules of the GoL the way he did. By setting the rules to cause Class 4 type behaviour,
Conway created much more interesting CAs.

6.4 Realism and Instrumentalism

People have noticed many patterns in the GoL, giving them names and characterizing them. It seems
obvious then that they are real. What do we mean by real? By real we mean they exist as persistent patterns
that we can observe, predict and manipulate. If this explanation seems unsatisfying, this may be because
of differing philosophical stances that you can take to this issue.

You could be a realist. A realist who believes that entities in the world exist independent of human percep-
tion and conception. In our context, it would mean that the patterns in the GoL exist, and are not constructs
of the human mind.

Conversely, you could be an instrumentalist. An instrumentalist believes that we can’t really say that a
theory is true or false, because we can’t know whether a theory corresponds to reality. We use instruments
like our senses in order to determine whether something is real or otherwise, thus there is nothing to say
that our senses give a correct representation of reality. An instrumentalist would be more concerned if a
theory has any purpose. If a theory is fit for its purpose, then it is useful. In the context of the GoL, if
patterns can be used to explain propagation of signals, they exist.

Note that both realism and instrumentalism exist on a gradient, with strong and weak versions of both. A
strong statement of realism is that:

A theory is true if it describes reality correctly, and false otherwise. The entities postulated by
true theories are real; others are not.

Similarly, a strong instrumentalist statement would be:

2Named after the oldest person whose age is mentioned in the Hebrew Bible
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Figure 6.2: A random starting condition for the CA

Figure 6.3: The CA from Figure 6.2 after 2000 timesteps. All the patterns in the CA are either static or
oscillatory. This would suggest that patterns which have more interesting behaviour need very specific
initial conditions.

It is meaningless to declare a theory true or false. Theories are an end to a mean and as long as
they serve a purpose they are useful.

Both statements are not too useful and usually weaker statements are adopted for both. As the next section
will show, there is some purpose to GoL CAs. As long as there is some use to the patterns, the instrumen-
talists should be happy.

I slant towards the instrumentalist viewpoint for the patterns in CA, as I have a very liberal interpretation
of usefulness. From an academic viewpoint, the existence of different patterns is interesting enough to
warrant their investigation. Furthermore, as GoL CA are Turing complete, it is useful, as they could hypo-
thetically be used as a computing architecture. For instance, Figure 6.4 shows a complete Turing Machine
implemented using the GoL3. It consists of adders, comparators, stacks and all the other required compo-
nents. I find this to be one of the strongest arguments for the existence of patterns in CA. Even if we do not

3http://rendell-attic.org/gol/tm.htm
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perceive the patterns, or understand them, we can still appreciate the fact they are a well enough studied
phenomena to be considered real and true.

Figure 6.4: A Turingmachine implemented using Gol CA. Although it is not apparent from the picture, each
part of CA consists of a subsystemwhich allows the greater machine to function. For a detailed explanation
of how everything works, visit Paul Rendall’s website.

6.5 Turmites

A turmite is a generalised Turing machine in two dimensions, named in homage to Turing. A famous
example of a Turmite is Langton’s Ant, discovered by Chris Langton. The ant is the read write head of the
Turing machine, with four states, canonically labelled as facing the cardinal directions. The cells in the CA
have two states, black and white. The ant’s behaviour is governed by two simple rules. If it is on a black
cell, it turns right, makes the cell white, and moves forward one cell. When on a white cell, it turns left,
makes the cell black, and then moves forward.

When a turmite is set loose, it is observed that it seems to have a random behaviour for a long time, then
settles on a cycle with a period of 104 steps. After each cycle, the ant would have translated diagonally,
creating a trail which is called a highway. Multiple turmites will interact in complex ways, making for
interesting viewing.

In 2000, Gajardo proved that Langton’s Ant could be used to calculate any Boolean circuit using the tra-
jectory of an Ant. It is fascinating that this is possible, as the rules for Langton’s Ant seem almost trivial.
Figure 6.5 shows two of the gates. Its is clearer now, that it is nontrivial to create patterns in CA that mean
anything. It brings me back to the idea that a million monkeys banging on typewriters would result in the
next great American novel. The Internet has proved that this is not the case, as has the GoL which results in
”boring” patterns. If we change our frame to life then, we see how the intricacies of life, how cells make up
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tissues, tissues make up organs and organs make up organisms (a very simplistic viewpoint), we see how
organisation of small elements, acting over a short range, can create effects that propagate far beyond their
size. Maybe then, the name ”Game of Life” becomes more appropriate, as it is a random roll of the dice for
the initial conditions which results in emergence (or absense) of complex phenomena.

Figure 6.5: An example of two different gates that can be created by a turmite from Gajardo. In this case,
the signal is the ”head of the Turing Machine”. A and B are types of crossings, while J is a junction.

6.6 Modeling using CAs

So far, the CAs we have examined have not reflected real life, and were treated as constructs with their
own meaning. In later chapters, we will explore CAs that model physical phenomena like percolation,
forest fires and avalanches. Notice how all involve things where things propagate from sources and small
disturbances can often result in dramatic effects.
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Chapter 7

Self-organized criticality

7.1 Tkinter interface

Before we get into the chapter proper, I would like to describe the Tkinter platform I used to visually display
the simulations. This interface was created later than expected, I did not have an interest in creating an
animated interface before, as it was not as important to observe transient effects. Below is the generic body
for my Tkinter simulation.

Code Listing 7.1: Discrete Fourier Transform

class Generic():

def __init__(self,size):

self.master = Tkinter.Tk()

self.board = Tkinter.Canvas(self.master, width=size, height=size, background='white')

self.board.pack()

def updatecanvas(self):

self.board.create_rectangle(0,0,1100,40,fill='white',outline='')

self.board.create_line(0, 16, 1100, 16,fill='black')

def step(self):

self.updatecanvas()

self.master.update_idletasks()

def loop(self,steps=100):

for i in xrange(steps):

print 'Step %d' %i

self.step()

The init function initializes a canvas where everything is drawn on. I use a canvas object, which allowsme
to draw shapes onto it easily, which is perfect for the sort of animation I hope to carry out. Updatecanvas
is what is used to modify the canvas. In an actual implementation, there would be a more sophiticated
pattern in its body, drawing things based on data. Step is a large function that is meant to encapsulate all
actions that need to be done in a single timestep. Finally, loop is what decides how many steps to execute,
making it easy to run the simulation for known periods.

I plan to use this basic framework for all my subsequent animations. It is an easy to implement option
for simulations which is non computational intensive if used correctly. To learn more about Tkinter, go to
http://www.pythonware.com/library/tkinter/introduction/.
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7.2 Bak, Tang and Wiesenfeld

This trio came up with the idea of self organized criticality, and published their findings in 1987. A critical
system is one that is in transition between states, like water at its boiling point. The self organized part
claims that critical system emerge naturally, and do not have to be artificially created.

Common behaviors of critical systems are:

• Long tailed distributions of some physical quantities.

• Fractal geometries.

• Variations in time that exhibit pink noise.

What we perceive as noise is actually a collection of many different frequencies which do not add up to
sound like anything pleasant. White noise is when all the frequencies have equal power. Pink noise is
when the lower frequencies have more power than higher frequency noise. If we use the visible light
spectrum, if all frequencies are of equal power, it is white, while if the lower ones dominate, it will appear
pink.

BT& W proposed a model of a sandpile where the grains of sand self organize into a critical state. The
model is not particularly realistic, but is an interesting model nonetheless. Allen Downey’s book gives a
good explanation of how to set up the model.

There is some ambiguity about how to initially set up the system. BT& W’s paper just states that every cell
should be above some critical value, but this is not enough when someone has to implement the system.
Suppose my critical value is 4. I found experimentally that if the initial conditions was between 5 and 10
or 5 and 20 made no difference to the way the system behaved. My explorations were not conclusive, as I
found it difficult to determine what data to use to try and compare the systems. One explanation was that
the self organized criticality behaviour was so robust that it did not matter what the exact initial conditions
were. After buying into that explanation, I chose an initial condition of 5 to 10, in order to get the system to
stabilize faster.

An important consideration in this model is the sophistication needed to track the changing cells. There
is two instances when the cell tracking differs: when the system is stabilizing after the initial conditions,
and when it is stabilizing after being perturbed in a single cell. In the first case, we can track it using a
simple variable. At the beginning of the timestep, we reset the variable. If at any point of the timestep a
cell changes, set the variable. If at the end of the timestep the variable is set, that means the system is still
changing. The second case requires more sophistication. In this case, we want to know the number of cells
changing, and thier identities. It is possible to concieve scenarios where a cell changes, only to return to its
initial state. This makes it important to track transient behaviour of the cells.

An easy way it to use a python data type called sets. They are like lists, but can only have one object of
a certain value in it at a time. Therefore, everytime a cell changes, append the x and y indices of the cell
into the set. If it already exists, nothing happens. We still use the variable mentioned previously in order
to check if the system is changing as a whole. Once the system stabilizes, the change variable would not be
set, thus signalling that the simulation can end.

The result from my simulation is shown below. It was ambigious which distribution to plot, therefore I
made the logical choice to choose to plot the ccdf of the function. As shown in Figure 7.1, the figure does
not really resemble what is shown in the paper. However, it is known the graphs with a ccdf like in Figure
7.1 have a straight pdf on a log log scale. Therefore, if the graph in the paper is of a pdf, then this result has
been corroborated.
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Figure 7.1: The frequency of the number of cells that changed after being perturbed. Since the shape is
consistent for the ccdf of a system with pink noise, we have corroborated the results from the paper.

7.3 Spectral Density

We need a tool in order to analyze the frquency of phenomena in the sandpile and other 1/f phenomenon.
The tool of choice is the Fourier Transform. The Fourier transform takes a input that is varying in time, and
returns the magnitude and phase of the periodic functions that it is composed of. The canonical example
is of the square wave. It can be proven to be the sum of a few sine waves of different frequencies. Figure
98 shows the square wave that results from summing up 4 different sine waves. With more sine waves, the
irregularities in the resulting square wave would be ironed out.

From the other direction, decomposing an input signal involves taking its Fourier transform

H(ω) =

∫

∞

−∞

h(t)eiωt

It is useful to use the relationship ω = 2πf as it decreases the number of times 2π appears.

Since we are dealing with discrete datasets, we have to discretize this function into:

Hn =

N−1
∑

k=0

hke2πikn/N (7.1)

Using the above expression, we can tell the magnitude and phase of various frequencies in the signal. If
we want to measure the power of the various frequencies, we need to take the square of the corresponding
frequecies’ magnitude.In effect, we are calculating the power signal density, P (f), which is a function that
maps from a frequency , f , to the power associated with that frequnecy in the signal.

P (f) = |H(2πf)|2

In our application, we do not really care to distinguish between f and −f . For real signals, the PSD is
symmetric about 0Hz, and thus taking the values from 0 to N/2 is sufficient to completely characterize the
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PSD. However, to obtain the average power over the entire interval, it is necessary to introduce the concept
of the one-sided PSD:

P (f) = |H(2πf)|2 + |H(−2πf)|2

Creating a discrete fourier transform in Python is aided by the cmath module which provides support
for complex numbers. Below is my implementation of a DFT. It is simply applying the DFT algorithm
mentioned above.

Code Listing 7.2: Discrete Fourier Transform

def dft(x):

from cmath import pi, exp

sign =-1

N, W = len(x), []

for i in range(N): # exp(-j...) is default

W.append(exp(sign * 2j * pi * i / N))

X = []

for n in range(N):

sum = 0

for k in range(N):

sum = sum + W[n * k \mod N] * x[k]

X.append(sum)

return X

An easy way to verify if a fourier transform is functioning is to tranform a known signal, and verify if the
expected results occur.

Although DFTs are pretty simple conceptually, they are not very fast. My implementation has a quadratic
order of growth, which is not ideal. Others have noticed this issue, which led to the discovery of the
Fast Fourier Transform(FFT). FFT is an efficient algorithm for computing the DFT, commonly having a
O(n log n).

The first step is to substitute W = e2πin/N into Equation (7.1)

Hn =

N−1
∑

k=0

hkWnk (7.2)

The second step is the Danielson-Lanczos Lemmas which states

Hk = He
k + W kHo

k

where He
k is the DFT of the even indexed terms, and Ho

k is the DFT of the odd indexed terms. This suggests
a recursive algorithm could be used to quickly evaluate the DFT sequence. First we recursively split h into
he and ho. Then we compute He and Ho by making recursive calls. Then we use the lemma to combine the
terms to form H

There is an interesting implementation that uses the reversal of bits to make the splitting of the series faster.
If we reverse the bits in 8 (0b100), we get 1 (0b001). If we had a signal which consisted of 16 segments, and
we split it by recursively dividing it into odd and even, we would get a sequence of:

08141221061419513311715

If we had performed bit reversal on the index values, we would have acheived the same result. Note how
8 became 1, therefore it is the second term in the new series. Below is a method that converts a list of values
into their bit-reversed equivalents.
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Code Listing 7.3: Discrete Fourier Transform

def bitrev(x):

N, x = len(x), x[:]

if N != nextpow2(N): raise ValueError, 'N is not power of 2'

for i in range(N):

k, b, a = 0, N>>1, 1

while b >= a:

if b & i: k = k | a

if a & i: k = k | b

b, a = b>>1, a<<1

if i < k: # important not to swap back

x[i], x[k] = x[k], x[i]

return x

It uses a helper function nextpow2 which returns the next power of 2 greater than the number. We now
can implement the FFT algorithmmentioned above. The decomposition of the signal takes log(n) steps and
the recombination for a complete FFT is linear for the number of discrete chunks, giving the algorithm an
order of n log n

Code Listing 7.4: Discrete Fourier Transform

def fft(x, sign=-1):

from cmath import pi, exp

N, W = len(x), []

for i in range(N): # exp(-j...) is default

W.append(exp(sign * 2j * pi * i / N))

x = bitrev(x)

m = 2

while m <= N:

for s in range(0, N, m):

for i in range(m/2):

n = i * N / m

a, b = s + i, s + i + m/2

x[a], x[b] = x[a] + W[n % N] * x[b], x[a] - W[n % N] * x[b]

m = m * 2

return x

Using the FFT function we have created, we can create a function to calculate the PSD of a signal. Pylab
has a function to compute the PSD of a signal. Therefore, I used it whenever I needed to calculate the PSD
of a signal. For future reference, the one sided power spectral density is defined as

Pn = |Hn|
2 + |H−n|

2

7.4 Pink Noise

If a signal consists of pink noise, its PSD is defined as

Pn ∼ 1/fn =
Nd

n

Taking the log of both sides, we get:
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log Pn ∼ log N − log n

Therefore on a log-log scale, the PSD of pink noise is a straight line with a slope of -1.

7.5 Forest Fire models

Another model that demonstrates 1/f noise is the forest fire model by Drossel and Schwabl. It is a CA with
three states: empty, on fire, or occupied by a tree.

The rules are simple.

1. An empty cell can grow a tree with probability pg

2. A cell with a tree will catch fire if any of its neighbours is on fire.

3. A cell will spontaneously burst into flames with probability pf

4. A burning cell becomes empty in the next timestep.

Drossel and Schwabl mentioned in their paper that if pf/pg = 0.1 the system is in a critical state. It is easy
enough to modify our sandpile implementation in order to become the forest fire model. The exact details
are left to the reader, as it is pretty trivial.

The difficult part was trying to to get a cell to catch fire. A cell has to be aware of the state of its neighbouring
cells, and change to the on fire state if any of its neighbours are on fire. The easiest way was to create
a method with created a list of tuples of coordinates if the coordinates of the center cell was given. By
looping through the neighbouring cells, it is possible to check if any of them are on fire. Other than this, all
other rules of the model are pretty easy to implement.

Once the model has been implemented, it is fun to play around with the values of pg and pf . If the rate of
growth is too high, the forest gets too dense, and fires spread easily across the map. On the other hand, if
the rate of fire is too great, the forests are constantly bursting into flames, preventing the creation of any
clusters of trees.

I did not manage to find any data in the model that produced 1/f noise. It was not too clear what data to
use. Due to time constraints, I left it at that.

7.6 Reductionism and Holism

Reductionism and holism is given a very good treatment in Downey’s book. I have no comment.

It was interesting to do the exercise where data was taken from different distributions, where the data
eventually collapsed into a normal distribution. I thought that was pretty cool.

7.7 Self organized criticality

The premise of the ’Great Man’ theory does not sit well with me, as it gives too much credit to the efforts
of few, over collective forces that I feel are more important. As a society, we are prone to exalting the
achievements of a few, maybe as a form of motivation for us. I prefer a more nuanced approach where
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Figure 7.2: The red cells indicate trees on fire, the green is trees and brown is the ground.

collective forces, like movements in society like the French Revolution, result in change, and those great
people are merely the leaders that emerge from those movements. It is the movement that empowers the
great person, and without it they will fail. This is not a very generaliable statement, and more work must
be put to disprove this theory.
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Chapter 8

Agent-Based models

Agent-based models are simulations based on the global consequences of local interactions of members
of a population. These individuals might represent plants and animals in ecosystems, vehicles in traffic,
people in societies, or autonomous characters in animation and games. These models typically consist of
an environment or framework in which the interactions occur and some number of individuals defined in
terms of their behaviors and characteristic parameters. In an individual-based model, the characteristics
of each individual are tracked through time. This stands in contrast to modeling techniques where the
characteristics of the population are averaged together and the model attempts to simulate changes in these
averaged characteristics for the whole population.

8.1 Characteristics

There are a few key characteristics to agent based models:

• Agents that model intelligent behaviour, usually with a simple set of rules

• The agents are usually situated in space and interact with each other locally

• They usually have imperfect, local information.

• Often there is variability between agents

• Often there are random elements, either among the agents or in the world.

These are not hard and fast rules, but are more of a guide to classify models. Interestingly, agent-based
models are able to model systems that are not in equilibrium although they can also be used to study those
at equilibrium.

8.2 Schelling’s Segregation

Racism is a complex phenomena which may prove daunting to simulate. However, Thomas Schelling’s
1971 paper, ”Dynamic Models of Segregation” showed that a supposed manifestation of racism, segrega-
tion, could be easily simulated. He discerns in his paper how segregation can be organised, result from
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economic processes or result from discriminatory individual behaviour. In choosing to focus on the last
reason, he allowed it to be modeled using an agent based model.

First, create a two dimensional grid of a neighbourhood where the cells represents available houses. Next,
populate the houses randomly with two kinds of occupants, nominally the Reds and Blues. The rules the
occupants will follow is simple. Each occupant will determine the occupants of the 8 surrounding houses.
If there are less than two neighbours of the same kinds, they will be unhapppy and move randomly to an
empty house. This process will continue until everyone does not want to move anymore as they are all
happy.

You would expect that with a threshold of two neighbours of the same kind that segregation would not
be significant. However, the results are striking. Figure 8.1 shows the result of segregation with different
levels of ’tolerance’. With a tolerance of 2, the neighbourhood looks diverse if the percent of empty houses
is 10%. However, if you observe the patterns closer it becomes clearer that there is a significant amount
of segregation occurring. A high density of occupants may obfuscate the segregation which exists in a
neighborhood.

(a) Minimum of 2 (b) Minimum of 3 (c) Minimum of 4

Figure 8.1: The Schelling model with two different kinds of occupants and 10% empty houses. The different
subfigures have different minimum limits of similarity before an agent is unhappy and chooses to move.

However, if we make the occupants more racist, the effects of segregation are a lot more apparent. Figure
8.1 shows the neighborhood with an intolerance(Minimum number of same types. This is a loose term)
of 3 and 4. There is a much clearer delineation between the part of the neighborhood for Blues and Reds.
Increasing the intolerance will result in unstable systems where nobody is happy. In a cluster of a Blue or
Red houses, it would be improbable that the cells on the edge would have say 6 neighbours of the same
kind. (If they did, they probably would not be on the edge of the cluster).

Another interesting variation is to set an upper limit to neighbours of the same kind. This would mean
cells would not want to be in a society that is too homogeneous, and would want diversity. Comparing the
neighborhood with(Figure 8.2) and without this factor, it is apparent that this factor only helps marginally
in creating more diverse neighborhoods.

Another perspective to segregation is Bill Bishop’s, where people are moving randomly, but they choose
explicitly where they move to. He theorizes1 that because people are more likely to choose to move into
areas where there are more people like them, they end up causing segregation. I did not implement this, but
it is still interesting to discuss it. You could guess that this algorithm would create a much more dynamic
system, as people will always move. Maybe at a higher level, where we do not distinguish particular
agents, the system would be in equilibrium, I would wager that the system would not stabilizes quickly.

1http://www.thebigsort.com
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Figure 8.2: Segregation model with a minimum of 2 and maximum of 6 for happiness. Notice how it is not
too different from the case when there is no maximum.

Instead, I would wager that the system would continue to evolve until both types of inhabitants would be
perfectly separated. There seems to be nothing that pulls the system away from becoming segregated, no
contentment nor phobia of too much similarity. I leave it as an exercise for the reader to prove or disprove
my assertion.

8.3 Traffic jams

The dynamics of highway traffic is ideal for simulating using an agent-based model. The agents, drivers on
a highway, follow simple distance maintaining rules. If they are too close to the next vehicle, slow down.
If the distance exceeds some limit, speed up. Their speed has a speed limit, and they cannot have negative
speed(go backwards).

There are two distinct results of these rules. First, is that traffic jams can occur spontaneously, without any
apparent cause. Second, is that the traffic jamwill appear to propagate backwards. One of the main reasons
for this is because the agents are able to brake much faster than they can accelerate. Therefore, vehicles
leave the traffic jam slower than they enter it.

My implementation of the highway was the simplest case of a highway that is a loop. More complicated
implementations would have a rate of vehicles entering the highway, and even multiple lanes to allow
overtaking2. All the vehicles in my highway are identical, following the same set of rules. Figure 8.3 is a
screenshot of the highway.

Figure 8.3: A screen shot of my highway implementation in Tkinter. The vertical lines show the exact po-
sition of the vehicles, as they are 1 pixel wide, and the circles aid in making the different vehicles more
obvious. By default, the vehicles all have different dark colors, which enables me to selectively color vehi-
cles brightly in order to visually track them. Although the highway is displayed as a line, it represents a
loop as both ends are connected.

Since overtaking is not allowed in my highway, the vehicles are always in the same order. Therefore, each
vehicle can have an attribute with the identity of the next vehicle on the highway. This makes it simple
to find out the other attributes for each vehicle. Each vehicle has a position, speed and distance to next
vehicle(following gap). To get the following gap, we just need to subtract the position of the two vehicles.

2http://www.traffic-simulation.de/
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It is important to decrement this gap value by one in order to prevent vehicles from choosing to be in the
same position in space. The logic system of the vehicles would use this gap value to decide whether to
speed up or slow down. Below is the speed choosing algorithm.

Code Listing 8.1: Algorithm used by the vehicle to choose its speed

def set_speed(self):

for v in self.vehicles:

if v.distance > self.limit:

v.speed += 1

elif v.distance < self.limit:

v.speed -= self.brakingspeed

if v.speed > self.speedlimit:

v.speed = self.speedlimit

elif v.speed < 0:

v.speed = 0

However, the vehicle does not necessarily move at its speed. Another function determines actually how the
vehicle moves.

Code Listing 8.2: Algorithm to chose how much to actually move

def move(self):

for v in self.vehicles:

v.speed = min(v.speed, v.distance)

v.position = v.position + v.speed

if v.position >self.size:

v.position = v.position - self.size

If its speed is greater than the distance between the vehicles, its speed would be the gap value instead. This
is how the vehicles are able to decelerate very quickly. If the gap value was not less than the actual distance
by one, the vehicles would end up occupying the same position. In real life, that means they have crashed.
Unfortunately, I did not implement explosions when vehicles collided, which would have been interesting.

Varying the different parameters yields some interesting results. My highway consisted of a loop with 1000
discrete positions for the vehicles to travel in. My metric to measure the throughput of the highway is
the average speed of all the vehicles on the highway, normalised for the speed limit for the vehicles. The
first parameter I varied was the following distance. As Figure 8.4 shows, the average speed decreases as
the following distance increases. This makes sense, as the total amount of space is finite. If the following
distance is too large, the vehicles will all be forced to slow down, and even stop, just to maintain the
distance.

Now, if we vary the number of vehicles, with a following distance of 70, we find, that the speed decreases
as the number of vehicles increases(Figure 8.5). We would expect this, as the more vehicles there are, the
more the finite space has to be distributed among them to maintain their distance. After a point, the speed
drops precipitously as the vehicles jostle with each other for space.

The final parameter I varied was the top speed of the vehicles. Interestingly enough, increasing the top
speed creates a sudden peak that gradually decreases(Figure 8.6). This peak shifts when the other parame-
ters like following distance and number of vehicles are varied.

I felt it would be interesting to view the kinematics of a vehicle on this highway. Setting the highway in
a condition which would yield moderate traffic jams, I determined the speed of the vehicle in time(Figure
8.7). It followed a trend that I expected. The vehicle would get stuck in a traffic jam, wait for a while, then
accelerate quickly away from it, only to rapidly hit the brakes and get caught in the back end of the same
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Figure 8.4: As the desired following distance of the vehicles increase, their average speed decreases rapidly.
This is mainly because of the limited space of the highway. 50 vehicles with a top speed of 10
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Figure 8.5: Increasing the number of vehicles has the expected decrease in the average vehicle speed. All
vehicles used a following distance of 70 and had a top speed of 10

jam. In real life, this sort of driving would probably wear out your brakes pretty fast and result in poor
mileage. In the Python universe, these concerns are moot.

A possible extension is to have the vehicles come up with a following distance based on their top speed and
braking rate. When you get a new car, you would use these values to determine your following distance.
The goal (pretty reckless one) is to stop just behind the next vehicle. Therefore, if you are travelling at
a speed of 10 units, and could decelerate 1 unit per time step, you would need a following distance of
10 + 9 + 8 + ... + 1 = 55. If all vehicles used this algorithm to determine their following distance, it will
partially solve the problem of traffic jams. This is assuming that there is enough space such that traffic jams
do not have to exist.

8.4 Boids

It has always been fascinating how birds and fish are able to move together without a central conduc-
tor. They are able to execute pretty elaborate patterns by following simple rules. Each agent has three
behaviours:

1. Collision avoidance: Avoid obstacles
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Figure 8.6: Increasing the top speed of the vehicles has the expected decrease as the speeds get too high,
as traffic becomes very start stop. However, the increase at the beginning is unexpected, and is due to the
vehicles all being very close to each other, and no vehicle ever speeding up that far away from the pack.
This claim was made after observing the vehicles all coalesce into packs that crawl along if their speed is
too low. 20 vehicles with a following distance of 100 were studied
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Figure 8.7: The crazy speed versus time movement a vehicle. There were 20 vehicles on the highway, with
a following distance of 50 and a top speed of 10. Notice the rapid increase and decrease in the vehicle’s
speed, as it leaves a traffic jam, only to enter into another one.

2. Flock centering: Move to the center of the flock

3. Velocity matching: Align velocity with neighbouring boids

4. Line of sight: If there is a boid in front, move laterally away

Boids are not gifted with omniscient information. Rather, they only have a limited field of vision and range
from which to make decisions with. However, this is actually enough for the flocking behaviour of the
boids to emerge.

An implementation of boids that we could build on is Allen Downey’s3, which represents boids as cones in
three dimensional space using Visual Python. This implementation uses a sphere as a target, and the sphere

3http://www.greenteapress.com/compmod/Boids.py
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can be made to follow the mouse cursor. In doing so, Downey has created an implementation which has
a simple interface while maintaining good visual feedback. A fifth behaviour is needed for the boids to be
attracted to the sphere, which Downey implemented using vector subtraction.

One behaviour that it leaves out is the line of sight behaviour. Using knowledge of vectors, this is easy to
implement. First, find the average heading of the boids within the (very narrow) field of vision of a boid.
We would want a narrow field for this, as this behaviour is meant for moving away from boids directly in
a boid’s way. Take the cross product of the average heading and a random vector to get a random vector
perpendicular to average heading of the boids in front of it.

(a) With the line of sight behaviour (b) Without the line of sight behaviour

Figure 8.8: The boids with a behaviour, line of sight, turned off and on. It is still pretty difficult to per-
ceive the difference that the behaviour causes, even with the total absense of a behaviour. I find that only
interacting with the computer simulation allowed the behaviours of the boids to manifest clearly.

The effects of each behaviour is proportional to their weighting. Personally, I found it difficult to perceive
the effects of varying the weight of an effect marginally. The most effective way to explore the space of the
weights was to turn of an effect, or make it very large. Most of the results observed were pretty much as
expected. For example, decreasing the weight of flock centering resulted in much larger flocks, as the boids
had less need to clump together.

There is a lot of room for extensions to this boids simulation. One track could be to determine the set of
weights which would create specific shapes and sizes for the flocks. Another is to introduce obstacles into
the environment and try to get the flocks to effectively navigate through them without dispersing. Here
is something to inspire readers to extend the model furthur: BlenderBoids-http://www.youtube.
com/watch?v=nSHycabSexo

8.5 Ants

8.5.1 Introduction and setup

Go outside and try to find an ant colony. If you are lucky enough to find one, you will be in the presence of
one of the most organized societies in nature. Ants exist in very structured communities that make it able
to almost act as a single organism4.

How do they achieve this? While ant societies do have queens, the queen is not the central conductor of
ant society. Rather, ants uses pheromones to communicate and coordinate their activity. A common agent
based model is that of an ant colony searching for food.

4Oster GF, Wilson EO (1978). Caste and ecology in the social insects, Princeton University Press, Princeton. p. 2122.
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The ant agent will be able two different kinds of pheromones. One is a long lasting pheromone that in-
creases in concentration nearer to the ant nest. This gives the ant an ability to home in on its nest. The other
pheromone, which is transient, indicates the presence of food. By following this pheromone ants are able
to find food.

There are two states for the ants: foraging and returning home. If the ants is carrying food, they will return
food, otherwise they will be foraging for food. While they are returning to the nest with food, an ant will
drop a quantity of the food pheromone with every step. This is how the trail of pheromones to the food
source is created. The ant will ’sniff’ for the nest pheromone and tend towards where the concentration is
highest.

If the ant is foraging, it is trying to sniff for the food pheromone and tend towards the direction of the
pheromone. If there is no food pheromone scent, the ant will move randomly. This is simple enough for
an ant to use the pheromone trail to find a source of food. Following the pheromone trail will get the ants
close enough to the food source, as the food pheromone trail will decay in time. Once close, the random
movement of the ant will allow (logically and from later simulations) it to find the food, and then reestablish
the food pheromone trail.

It follows then that if many ants reach a certain food source, the pheromone trail to it will gradually increase
to the point that it increasing fast enough not to diminish with time. Therefore, a path will be established
from the food source to the nest for the ants to follow. It will become possible to observe almost a highway
of ants moving up and and down the path, busy squirreling away food into their nest.

Using Python, we can implement this model on a 2-D landscape. It is important to try and make as efficient
as possible code in this simulation, as we will be dealing with a lot of dynamic agents. Slow simulations
will obfuscate patterns that are emerging from the CA, preventing us from recognizing them.

The terrain would have three 2-D arrays to represent it; one to note the quantity of nest pheromone, another
for the food pheromone and a third for the food. The indices of the elements in the array would correspond
to spatial coordinates in the world, making it simple to determine the amount of pheromone or food at a
point on the map. As said above, the nest pheromone array would contain

Next, we need to design an ant agent. The agent must be able to sniff the terrain and choose the appropriate
direction to go towards. When it is following a pheromone trail, it will compare the quantity of pheromone
ahead of it and to its left and right, then head towards the direction where the quantity is greatest. If no
pheromones are found, the ant will randomly choose to turn left or right, or just go forward.

The sniffing process outlined above depends on the ants ability to know its heading, and the heading to its
left and right. I used a tuple to store the headings in the format shown in Figure 8.9. An easy way to indicate
the direction to the left or the right of a particular heading is using lists which are offsetted appropriately.
Therefore, to find the direction to the left of (1,0), you would find the index of (1,0) in a headings list, then
determine the value that corresponds to that index in the turnleft list. This lookup is efficient, and is very
intuitive for the programmer. An issue with Tkinter is that is uses the top left corner as its origin, with its
axis pointing right and down instead of the right and up which we are used to. Therefore, by abstracting
this complication away from the programmer, it becomes easier to control the agents.

One large issue in this simulation is the number of variables that need to be tracked and then drawn onto
the canvas. My implementation used a Tkinter canvas object to display the terrain and agents. It would be
unreasonable to draw new rectangles (everything is represented by rectangles on a grid) at every timestep
as you will soon end up with large numbers of layers on your canvas, which will drain your memory and
be very slow.

A better way would be to store the ids of all the rectangles that make up the terrain. If you create it in a way
such that the ids follow like the way a typewriter moves, it would be easy to back out the id of a rectangle.
It would be the sum of the horizontal coordinate and the product of the vertical coordinate and width of
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Figure 8.9: The direction system used by the ants. The reason why up is negative, is because of the Tk-
inter coordinate system which points right and down. This simple direction scheme allows easy turning
algorithms to be devised using list lookups.

the terrain. Using the function itemconfig on the canvas, you can modify any object on the canvas by
specifying its id. In my implementation, I just modify the color of points on the grid. I could have used a
specific rectangle to represent an agent and kept on modifying its position. However, I decided to use the
first way as it was the way I implemented it first. Figure 8.10 is a screenshot of the ant simulation.

Figure 8.10: This is a screenshot of the ants in the terrain. The blue represents the pieces of food, but the nest
is not shown. Ants can exist in four colors, indicating their behaviour. Green is a foraging ant, red is an ant
following a trail, and orange is an ant returning to the nest with food. The trail of food pheromone is not
shown as animating that would use up toomuch computing resources. Instead, we rely on the ant changing
color to reveal traces of the pheromone. For scale, the ant can move a single step in every timestep, and the
terrain is a 200 by 200 grid.
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8.5.2 Analysis

Once the terrain and agents have been set up, you could begin to let the simulation run and observe the re-
sults. You should be able to observe the ’highway’ of ants travelling from the nest to the food sources(Figure
8.10). If you do not observe this, you might have set some constants badly. The key constants are:

1. Amount of food pheromone to drop at each time step

2. Rate of decay of the food pheromone

3. Maximum distance of the food sources from the nest

4. When foraging, the probability of the ant changing direction

5. the number of ants

The five constants are all related. If the amount of food pheromone dropped is say 100, and the decay rate is
1, then after 100 timesteps, the trail would disappear. Assuming the maximum distance of the food source
to the nest was 50. Then, things would work out as the ant would be able to retrace its trail back to the
food source before the trail decayed. However, if the maximum distance was 100, then when the ant set out
again to find the food source, it will only be able to go 50% the way back as the rest of the trail would have
decayed. Then, the foraging probability constant takes over.

In my implementation, it appeared that the ants almost had a GPS like ability to home in on the nest and
return to it. Therefore, the trails that they made were generally straight lines with maybe one bend. This
implies that if an ant started following a rapidly decaying trail and mostly just kept on heading in the
direction in which it last found pheromones, it should reach the food source. There is a fallacy here where
a sharp bend could lead a few ants to wander off into the abyss. In conclusion, it might not be ideal to set
the probability of the ant changing directions to be very low.

Finally, the number of ants can significantly change the dynamics of the system. A lot of the problems
mentioned above can be mitigated with more ants. For instance, if two ants at about the same time go from
a food source to the nest, they will create a stronger trail from the food source to the nest. (The ants would
generally travel to the nest in almost the exact same path if they came from close food sources.) If the time
difference was say 50 time steps (to match the constants we used above), the first ant would actually be able
to smell the pheromone 75% the way back to the food source. This would significantly increase its chance
of returning to the food source.

The effect of more ants scales amazingly. I set up the decay to be one unit of food pheromone at each
timestep. Therefore if there was 10 units of pheromone on a patch of terrain, it would take 10 timesteps to
decay, but if there was 100 units, it would take 100 timesteps. The pheromone then takes much longer to
decay, increasing the probability of an ant stumbling upon it and following it.

A crucial nuance in the model is that the ants have a heading, and can turn left or right. This is important,
as there will be situation where the greatest amount of food pheromone is directly behind an ant. Everytime
an ant returns to follow a trail that has been laid out by another ant, the path to the nest would be stronger,
as it would have beenmade later. If the ants could do an about turn and follow the strongest smell, it would
be heading back to the nest, instead of the food. This would result in the trail dying off, as no new ants
would help reinforce it before it decayed.

It would have been excellent to provide more quantitative measures of how these constants affected the
system. However, they are all very closely related, and the trends of the results would not be too surprising.
In addition, the constants are so strongly coupled that if a constant was defined such that an interesting
result occured, it might be giving a false indication of general behaviour of the system.
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In closing, I would like to tell a story of one of my debugging adventures. I implemented the model in
steps, first creating the terrain, adding behaviour to the ant, then adding the pheromones. My penultimate
step was implementing the decay of the food pheromone. Before I implemented it, the ants would do
this strange thing of making these loops of going to the food source and going back to the nest, but not
collecting any food. It was very puzzling. This ended once I implemented the decay. In my final step, I
implemented a visual system to see the pheromone trail. Playing around with turning on and off the decay
factor, I realized what had happened. The ants would follow trails made by other ants so well, that they
would never leave it. Thus they were stuck following the trail made by the initial ’trailblazers’ and kept on
grazing the food source, getting close, but not close enough. This anecdote highlights for me the challenges
of implementing an agent based model; it is difficult to pin point where the error is. Rephrasing that, it is
difficult to know if the half finished model is working, or if it contains significant design flaws.

8.6 Emergence

The word emerge has been thrown around a bit in this chapter, but what does it really mean? To get there,
we need to explore the concept of emergence more. Professor Jeffrey Goldstein defines it that a system has
emergent behaviour if has the following characteristics:

• Radical novelty

• Coherence or correlation

• A global or macro level

• It is a product of a dynamical process

• It is ostensive (It can be perceived)

• Supervenience (Downward causation)

All these characteristics do not have to exist for a system to be considered emergent, as that would preclude
many systems. Radical novelty also has a ambiguous connotation. Once you have observed something,
would it still be radically novel? It might be more apt to consider it radically novel if resulted in behaviour
that was unexpected if only the agent’s behaviour was known. From the ants model:

• An ant is able to somehow find food and bring it back to the nest efficiently. The highways of ants is
also pretty radical.

• It is possible to make sense of the global ant behaviour by considering the behaviour of an ant.

• There is the global behaviour of the ants working in concert to bring food to the nest.

• The motion of the ants is a product of them moving around sniffing for pheromones.

• It is easy to observe the highways of the ants moving from the nest to the food sources.

• The movement of the ants, is dictated by the greater behaviour of the ants creating trails of
pheromones.

The concept of supervenience could be more easily explained if we think of it as feedback. If we think of a
system as a heirachy of more complex systems on the top and simple agents on the bottom, we can divide
behaviour and characteristics of the system throughout the heirachy. We would expect all systems to have
upward causation, where the more elementary components determine the behaviour of the system as a
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whole. In contrast, downward causation implies that the more complex systems provide feedback to the
more elementary units.

Emergence may be divided into two different perspectives: Weak emergence and strong emergence. Weak
emergence describes new properties arising in systems as a result of the interactions at an elemental level.
In this case, emergence is used as a model in order to describe a system’s behaviour. By comparison, strong
emergence implies that a system is irreducible into its components. Behaviour that observed in the system
is a result of the interaction of its components, thus cannot be determined by determining the behaviour of
the components.

It may seem that all the models described in this chapter are weakly emergent, as I have traced system
behaviour down to the behaviour of individual agent. However, this ignores that I have been vague about
the exact effect of an agent’s behaviour on the greater system. I have pointed out trends, and made ratio-
nal deductions about why such behaviour emerges. Emergence is often cited as a strong claim about the
etiology of a system. Etiology is a word primarily used in philosophy to describe the study of why things
work. My attempts at describing the nature of emergent systems is far from complete, as I do not purport
to be able to predict accurately the behaviour of a system based on the choice of parameters used. In that
sense, emergence could be cited as the reason for the system’s behaviour. This would provide a framework
to define the system, as we have already established that emergent system are difficult to reduce into com-
ponents. It is interesting how by defining system to be strongly emergent, we can mostly get away from
trying to provide closed solutions to the behaviour of emergent systems.

As a footnote, I want to point out the difficulty in designing emergent systems. The very characteristics that
define it make it excruciatingly difficult to design. How would you design radical novelty? It is most likely
a natural selection process enabled the optimization of such systems in the natural world. One certainty
is that there are many poor combinations for parameters in an emergent system, and only a few optimal
solutions.
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Stochastic modeling

Stochastic modeling is where we explore how non-deterministic systems act, aided by the mighty tools
from probability and statistics.

9.1 Monty Hall

An very non intuitive problem is the Monty Hall problem. Wikipedia1 has a great page describing the
gameshow Let’s make a deal, where the problem originates from. With that, we are comfronted with the
decision, to switch or not to switch.

Knowing probability theory would help you determine the answer. The first choice is either the right or
wrong door, with a 1

3 chance of being right. Therefore if you switch, you have no chance of winning.
However if you are wrong the first time, you now have a perfect chance of winning, as Monty has removed
the wrong door, if you switch. Since the probability of being right the first time is 1

3 the probability of
winning if you switch is:

P =
1

3
· 0 +

2

3
· 1 =

2

3

This takes some thinking in order to believe. The main piece that alludes to the benefit of switching is that
Monty provides you with information when he opens one door. If he randomly opened doors, then the
math above would be false.

The idea of conditional probability is powerful, as it can exaggerate the effects of rare events. Imagine a
family with two children, each of which could be a boy or girl (assume the probability of either is equal).
We know that there are three possible cases for the two children, both boys, both girls, and mixed in either
order. Therefore, the probability of having two girls is one fourth.

However, if we constrict it to say we know that one child is a girl, then the probability of having two girls
is 0.5. Its essentially saying ignore that there is two children, and focus on the probability of the second.
Mathematically, conditional probability can be expressed as:

P (A|B) =
P (A

⋂

B)

P (B)

where the probability of event A given event B, is the ratio of the event that both occur over the probability
of B occurring.

1http://en.wikipedia.org/wiki/Monty_Hall_problem
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To illustrate the power of this, assume you have a needle in a 100 by 100 grid haystack. The probability of it
being anywhere in the grid is 1

10000 . However, if we have searched through say half the haystack and have
not found it, we know that the needle has to be in the other half of the haystack. In other words, the event
of finding the needle is only in the space of finding it in half the hay stack, thus 1

5000 .

We can easily model these events in python as it contains a random number generator which is fairly good.
They should all give the same results as the analytic solutions. You may need to simulate a large data set in
order to get data that matches the analytical solution as there will be deviation due to random behaviour.

9.2 Poincare

Poincare supposedly had an issue with his baker: he thought that the baker was selling loaves which were
lighter than advertised.

We can simulate a normal distribution in Python using the normalvariate function, which can generate a
random sample from a normal distribution of a given mean and standard deviation. To prove Poincare’s
problem, we sample from a normal distribution of mean 950 and standard deviation 50. We choose n loaves
from this distribution, and take the heaviest loaf. This is our choice. Doing this choice 365 times (to simulate
a year), allows us to determine the distribution of bread that Poincare got. By varying the number of loaves
looked at before choosing the heaviest, we can tune the resulting distribution to have the right mean. I
found that to get a mean of around 1000, you would need to choose from four loaves. Figure 092 shows the
distribution of the bread. Although it has a mean of 1000, it is a more asymmetric than one would expect.
The difference is not very apparent, but it is clearly asymmetric.
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850 900 950 1000 1050 1100 1150 1200
Weight of bread

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Fr
e
q
u
e
n
cy

(b) Bread for 36500 days, in order to make
the distribution clearer

Figure 9.1: The distribution of bread given to Poincare by the baker. The graph on the right is an exager-
ation in order to show the shape more clearly. As the figures show, the distributions are asymmetric, thus
Poincare has good reason to believe that his baker is shortchanging other customers.

9.3 Streaks

In sports, there is a tendenecy to glamorize streaks. Commentators will exclaim how amazing it was for
some record to be set, and how it would go down in histiry. A simple simulation could illustrate that the
sheer number of games played in sports would result in statistical rare events eventually.

The simulation is of a basketball team over a 82 game season. There are 10 players in each game, each of
which takes 15 shots a game. Each shot has a 50% chance of going in. A streak would be considered having
either 10 or more hits or misses in a game in a row. My simulation proved that, on average, there would be
1.5 such streaks every season.
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Determining the length of streaks was something I had to ponder for a while. The best solution I found was
the algorithm below:

Code Listing 9.1: Count Streaks

for i in xrange(15):

if random.random()<0.5:

hits += 1

misses = 0

else:

hits = 0

misses += 1

The for loop goes through every shot a player makes, and increments a counter if he hits or misses. By
reseting the counter when the player changes what he does (missing when he has been scoring or vice
versa), the counters effectively become counters for the length of streaks.

9.4 Bayes Theorem

Allen Downey’s book gives a good introduction of Bayes theorem. An example of use of the Bayes theorem
is in doing a Bayesian search. In such a search, you would use your accumulated knowledge in order to
refine your prediction of the system. In the book, Ship of Gold in the Deep Blue sea, it was explained that
some sort of Bayesian search was used to locate the ship wreckage based on historical knowledge, sensor
data and other sources. In that sense, the ability of Bayesian inferences to use different kinds of information
in order to determine probabilities is useful.

You can use also Bayes theorem in order to solve so called trivial problems as well. Suppose that you have
two jars of cookies. In one, half is chocolate, and the other is plain. In the other jar, 3

4 is chocolate, while the
rest is plain. If you close your eyes, and randomly pick a cookie from one of the jars and get a chocolate
cookie, what is the probability that you chose from the first jar?

If we define C to be the event a chocolate cookie was chosen, and O to the be event that the jar was the first
one, we can see:

P (O|C) =
P (C|O)

P (C)
· P (O)

which simplifies to:

P (O|C) =
0.5

3/8
· 0.5 =

3

16

Therefore, you could guess the identity of a jar pretty well just by sampling one cookie from it. More
important uses of such sampling is in quality control, where a limited sample is used to try and predict the
performance of a larger number of objects.


