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Roomba Robot Simulation 

 
Introduction 
The goal of this application problem is to model a Roomba robot as a two dimensional rigid body 
with spatial extent, verify the model we develop, and apply inverse kinematics to get the 
Roomba to follow a specified trajectory. We use a free body diagram of the Roomba, while 
applying what we have learned about coordinate frame transforms, to develop a set of 
governing equations. From there we use the governing equations, and other necessary 
relationships, to create a simulation in Python. The model is verified through this simulation by 
looking at the displacement and trajectory of the Roomba. We conclude with inverse kinematics 
where we control the Roomba’s motion from the end path we want the Roomba to follow.     
 
The Model 
In order to accurately abstract the Roomba and create a valuable model, we began by 
developing an understanding of the kinematics of the Roomba. We did this by drawing a free 
body diagram and identifying our coordinate frames (Figure 1). The motion of the Roomba 
required that we make use of two reference frames. Both are in rectangular coordinate systems. 
The first is the stationary frame X-Y, with Z coming out of the page (as per the right hand rule). 
The second is the t-n frame, indicating the tangential and normal directions, which captures the 
rotation of the Roomba relative to the stationary frame. The origin of X-Y is fixed and set at an 
arbitrary location, while the origin of t-n is fixed to the center of the Roomba (center of mass) 
and moves relative to the X-Y coordinate frame. This frame is stationary relative to the wheels. 
Since the Roomba can only move forward and rotate, the combination of these two frames is 
satisfactory in capturing the overall motion.  

 
Figure 1: This figure shows the free body diagram of the Roomba along with the 
necessary reference frames. There are two rectangular reference frames used to 
capture the Roomba’s motion: X-Y and t-n. X-Y is stationary and t-n rotates and 
translates as the Roomba moves. The angle theta is used to control the rotation of the 
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reference frame t-n, and with that, the forward direction of the Roomba. For the 
direction of forces, we are taking velocity to be positive in the positive X and Y-
directions.   

 
Governing Equations 
Using the free body diagram and the selected reference frames (Figure 1), we were able to 
determine the kinetics of the Roomba, which are presented in the form of the equations of 
motion. Since we are modeling the Roomba in two dimensions, the Roomba can be thought of 
as a thin disk, with center of mass at the origin of t-n. Applying the kinetics by summing the 
forces and moments, leads to three governing equations: forces in the X-direction (1), forces in 
the Y-direction (2), and moments about the center of the Roomba (3). We initially derived the 
equations in the t-n frame, and then used coordinate frame transforms to express them in the 
X-Y frame. This allows us to look at the Roomba from the stationary frame and understand both 
its translation and rotation.  
 

Sum of Forces:  

( ) θθ sin2cos,, nldragrdragrl FFFFFxm −+++=  (1) 

( ) θθ cos2sin,, nldragrdragrl FFFFFym ++++=  (2) 

Sum of Moments:  

rFFFFI ldragrdraglr )( ,, +−−=θ  (3) 

It is important to note that the sign of the forces due to drag on each of the wheels, as well as 
the normal force, is positive in the equations listed above but these forces do act as indicated in 
the free body diagram. The free body diagram was used as an aid to determine the governing 
equations and gain a qualitative understanding of how the Roomba moves. However, the 
equations are used in our simulation so, in an effort to keep the equations consistent and let the 
equations generate the appropriate signs, we have included the direction of the drag forces as 
negatives in our constitutive relationships (Equations (7)-(10), to follow).   
 
The factor of 2 in the last term of Equations (1) and (2) comes from the inclusion of the normal 
force from each wheel of the Roomba. The forces are the same on each wheel in terms of both 
magnitude and direction.  
 
Additional Equations & Constitutive Relationships 
In order to use the governing equations in a simulation, we must put them in a form where we 
know the value of each term. The force on each wheel is known, as we are prescribed a value 
for the maximum force. Including our constitutive relationships is the last step in abstraction 
and allows us to write the equations of motion in known terms. 
 
For use in our simulation, we have determined additional equations that make use of known 
values and allow us to define unknown values in our equations of motion. The velocity of the 
Roomba in the n-direction, as well as the velocity of each wheel, is presented in Equations (4), 
(5), and (6). Each of these equations has been developed using coordinate frame transforms. 
This enables us to express the velocities with respect to the stationary X-Y frame.   
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θθ cossin yxVn  +−=  (4) 

ryxVl θθθ  −+= sincos  (5) 

ryxVr θθθ  ++= sincos  (6) 

 
The first constitutive relationship is for the mass moment of inertia. This equation (7) is for a 
circular disk or plate rotating about its z-axis, which runs through the center of mass of the disc. 
It assumes that the disk is of constant density and, thus, also that the center of mass is at the 
center of the disk.  
 
The constitutive relationships for force of drag on the wheels, and also the normal force on the 
wheels, involve the velocity of the wheel in a specific direction, along with a prescribed or 
determined coefficient of drag. These relationships stem from a quadratic drag model for 
viscous drag. Equation (8) shows the relationship for the normal force. This is necessary to 
ensure minimal translation in the n-direction. This coefficient is arbitrarily set at a value high 
enough to render this translation insignificant. Equations (9) and (10) show the relationship for 
the tangential drag force on each wheel. The value of the drag coefficients were prescribed as 
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constitutive relationships is in place to ensure that the force is acting in the direction opposite 
the motion of the Roomba. 
 

Constitutive Relationships:  

2

2
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nnnn VVkF −=  (8) 

rrdragrdrag VVkF −=,  (9) 

lldragldrag VVkF −=,  (10) 

 
We determined the final governing equations by inserting the constitutive relationships. 
Equation (11) governs the angular acceleration, while Equations (12) and (13) specify the linear 
acceleration in the X-direction and Y-direction, respectively.  
 

 
Final Equations of Motion: 
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m
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The final governing equations can be expressed in the state-vector form, which allows for easy 
manipulation within the computer simulation. This form is presented in Equation (14). The 
variable we have selected to represent our vector is X. Vector X contains information about the 

position ( x , y ,θ ) and velocity ( x , y ,θ ) of the Roomba.   
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(14) 

 
Model Verification 
In order to verify our model, we wrote a computer simulation using Python. We did this within 
the PyLab environment, which allowed us to use several modules valuable modules to run our 
simulation. Our simulation uses an ODE solver with a slope function. The slope function takes 
inputs from our state space and returns the first derivative (Jacobian matrix) of our variables. 
The simulation includes logic statements which use time to vary forces. We send it a time and it 
applies the proper forces to the left and right wheels of the Roomba model. Our code 
commented code is provided in the Appendix.   
 
To verify that our model was working appropriately, we simulated two simple trajectories. 
Simple simulations allow us to compare results with our intuition to find bugs in the code and 
errors in our equations of motion. 
 
Straight Line Trajectory 
The first simple trajectory is a straight line motion. The Roomba follows a straight line for 2 
seconds as can be seen in Figure 2a. The Roomba starts at the origin of the X-Y reference frame 
(0m, 0m), and moves to (1.4m, 0.8m). The arrows indicate are proportional to the magnitude of 
the velocity of the Roomba at different locations within its trajectory. As expected, the arrows 
close to (0m, 0m) are small and get larger quickly as the Roomba reaches its cruising velocity. 
During the initial movement, the Roomba must overcome friction. The input generating this 
movement is the constant maximum force ( NF 7.2max = ) applied to each wheel.  

 
When the simulation stops running (after 2 seconds), the Roomba’s velocity is still the same as it 
was the moment immediately before. The Roomba has not been slowed at all, so the straight 
line trajectory concludes with an arrow of the same size as the moment before.  
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Figure 2b illustrates the displacement of the Roomba in the X and Y directions over time. The 
movement in both directions shows slight curvature initially which corresponds to the increase 
in velocity of the Roomba.   
 

 
Figure 2: This figure shows the straight line trajectory within the X-Y reference frame 
(a) and the displacement over time (b) of the Roomba. The Roomba started off from 
rest with an initial velocity of zero and a 30º heading. A constant force of 2.7 N was 
applied at both wheels. The arrows in (a) indicate the magnitude and direction of the 
velocity. In (b), the blue line shows the displacement in X and the green line shows the 
displacement in Y.   

 
Circular Trajectory 
Another simple trajectory used to verify the accuracy and functionality of our simulation is that 
of a circle. To do this, we input a force of 2.7 N to just the left wheel, while the right wheel 
received no input force. This example tests the behavior of the model and helps us to verify that 
the model is obeying kinematic constraints. The trajectory and displacement of the center of 
mass of the Roomba as it moves in a circle is shown in Figure 3.  
 
The arrows in (a) are proportional to the magnitude and direction of the velocity. The Roomba 
starts off with a velocity of 0 m/s, and increases to a constant velocity as it completes the 
trajectory. The arrows also show that the heading of the Roomba is tangent to the circle at all 
times. This is a meaningful way for us to verify that the kinematic constraints within the 
equations of motion are included correctly and that our model is functioning appropriately.  
 
Plot (b) shows the displacement of the center of mass in both the X-direction and the Y-direction 
over time. This is helpful in verifying that the model behaved as expected and did in fact follow 
the trajectory as indicated in (a). When approximately 0.6 seconds have elapsed, the Roomba is 
at about (0.9m, -0.9m) as seen in (a). This is the maximum displacement from the origin in the X-
direction, which means that it should be the maximum peak point in plot (b). Looking at plot (b), 
this is confirmed. The blue line (displacement of X) peaks at about 0.9m, while the green line 
(displacement of Y) is at about -0.9 m. It takes the Roomba just over 2 seconds to complete the 
circular trajectory. 
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Figure 3: This figure shows the circular trajectory within the X-Y reference frame (a) 
and the displacement over time (b) as the Roomba moves in circle. The Roomba 
started off from rest with an initial velocity of zero. A constant force of 2.7 N was 
applied at the left wheel, while the right wheel received no input force. The arrows in 
(a) indicate the magnitude and direction of the velocity. In (b), the blue line shows the 
displacement in X and the green line shows the displacement in Y.   

 
One additional way to verify that the heading is always tangent to the trajectory is to plot the 
angle (θ ) against time. As can be seen in Figure 4, the Roomba starts off at 0 radians and 
progresses to π2  radians over time. The angle is negative because the Roomba is turning right 
and we originally defined theta positive according to the right hand rule (Figure 1). The curve at 
the start of the motion is due to the Roomba starting from a resting position. The data set soon 
becomes linear, indicating constant velocity. The illustration of the Roomba reaching a constant 
velocity coincides with the size of the arrows shown on the trajectory in Figure 3a.      
 

 
Figure 4: This plot shows the Roomba’s heading over time as it moves in a circle. 
Moving in a complete circle means that the Roomba will move from 0 radians to 

π2− radians. The Roomba starts from rest, so there is a slight curve initially. 
However, the Roomba soon reached a constant velocity as expected.  

 
By modeling the straight line and circular trajectories, we were able to verify that our equations 
of motion are correct and that our simulation behaves as it should. This is an important step in 
the process of creating a working simulation because it allows us to trust the simulation and its 
results in more complicated trials.  
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Inverse Kinematics 
With our developed model, we can now work backwards through kinematics to get the Roomba 
to follow a desired trajectory. Figure 5 shows the trajectory the Roomba followed. Plot (a) shows 
the motion, with arrows indicating magnitude and direction of the velocity. The arrows are 
always tangent to the circle showing the heading of the Roomba. The Roomba moves in a 
straight line for 2m, then complete a 1m radius circle, and then returns to where it started the 
circle to continue moving forward for 2 additional meters.  
 
Plot (b) of Figure 5 shows the displacement of the Roomba in the X and Y directions over time. 
The blue line indicates the motion in the X-direction, while the green line indicates the motion in 
the Y-direction. Initially and finally, the Roomba is just moving in the X-direction and so the Y-
direction displacement is zero meters. At 2.4 seconds, the Roomba begins to move in a circle. It 
completes the circle at t=10.7 seconds, and continues forward again in the X-direction. After 
about 11.8 seconds the input force on the wheels is zero and the Roomba coasts to a stop, due 
to the dynamic friction. All the times were determined empirically.    
 

 
Figure 5: These plots show the trajectory and displacement over time of the center of 
mass of the Roomba. The arrows in (a) indicate the direction and magnitude of the 
velocity of the Roomba through the course of its trajectory. The Roomba coasts to a 
stop as can be seen by the arrows getting smaller at the end of the trajectory. Plot (b) 
shows the displacement over time. As expected, the displacement in the Y-direction is 
at zero meters before and after the Roomba completed the circle.   

 
This trajectory was input by varying the forces to the wheels at different times during the 
Roomba’s motion. The specific piece of code that controls the motion is shown in Figure 6. The 
first if statement and the last two show the Roomba moving in a straight line; both wheels 
receive the same force. The second statement shows the circular movement. The Roomba 
moves counter clockwise due to a greater force input to its right wheel.    
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Figure 6: Part of the code used to control the Roomba and satisfy the inverse 
kinematics problem is presented above. The forces are varied at different times within 
the complete trajectory so that the Roomba will respond as desired. 

 
We were successful in using inverse kinematics to control the trajectory of the Roomba. The 
Roomba was able to complete this trajectory in approximately 18 seconds. We slowed the 
Roomba down (stopped inputting force) after about 11.8 seconds. This had an effect on the 
time it takes the Roomba to complete the entire trajectory. Were we to allow the Roomba to 
continue moving in a straight line in the X-direction after reaching 4 meters, and thus keep the 
constant maximum force input to the wheels, the Roomba could have completed the trajectory 
in about 14.3 seconds.  
 
Conclusion 
We were able to successfully create a model of a Roomba by developing the equations of 
motion of the Roomba in a global reference frame. We created a simulation of our model in 
Python and used test cases to verify that our model was accurate and that our simulation was 
controlling the behavior of the model appropriately. Finally, we were able to use inverse 
kinematics to specify the trajectory of the Roomba.   
 
Reflection and Learning 
We learned a lot from completing this application problem. We were able to apply kinetics, 
kinematics, and constitutive relationships to determine the equations of motion. The application 
problem is a fairly general use of rigid body dynamics, so it gave us widely applicable experience 
in modeling simple systems.  
 
We started with a free body diagram and clearly indicated our reference frames. This allowed us 
to discuss all the forces on the Roomba and translate the diagram into governing equations. We 
used coordinate frame transfers to express the motion of the Roomba in the global reference 
frame, and then put the resulting equations into a simulation. The inevitable debugging process 
began at this point, and we iterated back through the free body diagram and governing 
equations until the test cases of the code worked as expected.  
 
One of the most significant and beneficial things we learned was the importance of test cases. 
We were able to see how they can be helpful in verifying that the equations of motion are 
correct and also that our code functions properly. This is really important in verifying that the 
model obeys the kinematic constraints.  
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Doing the simulation in Python worked out well. There was a learning curve that had to be 
overcome. However, we were able to learn how to use Python in the PyLab environment and 
gain experience in working with this language. We feel that this will be a valuable skill for us in 
our future endeavors.    
 
We feel that we have also improved in the area of technical writing. We worked to clearly 
illustrate our process to the problem, conclusions, and learning. We used equations, figures, and 
plots to supplement our explanations. This application problem was a great way for us to use 
tools we have acquired in the Dynamics Course and become more confident in using them with 
complicated problems.  
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Appendix 
 
Simulation Code 
# Application problem 2  
# Roomba simulation  
# November 20 2008 
# by J. Gorasia, M. Ritter, L. Velez 
 
from numpy import * 
from pylab import * 
from scipy.integrate import odeint 
import math 
 
# Initial Conditions 
# The "state" of the system is {x, \dot(x),y, \dot{y},theta,\dot{theta}}^T 
x0 = zeros( 6 ) 
#x0[4] =   math.radians(30)  # heading in radians 
 
# Time Bounds 
t0 = 0.0                     #Initial time [s] 
tF = 18                      #Final time [s] 
tt = linspace(t0,tF,50)      #Time array for use in ode solver 
 
# Roomba information 
d = 0.33                     #Diameter [m] 
r = d/2.0                    #Radius [m] 
m = 2.7                      #Mass [kg] 
I  = (0.5*m)*(r**2)          #Inertia about the center, assuming it is like a disc [kgm^2] 
f_max = 2.7                  #maximum output force of the wheels [N] 
kdrag = 3.4                  #drag tangential to motion of the wheels [N/(m/s)^2] 
kn = 1000                    #drag normal to motion of the wheels [N/(m/s)^2] 
 
def sign(x): 
    """Returns the sign of the input value""" 
    if x < 0: return -1 
    elif x > 0: return 1 
    else: return 0 
 
def dX_dt(X, t=0): 
    """ 
    Return the Jacobian (first-derivative) of the state. 
    Both the input and output need to be arrays 
    """ 
    #Vary input force to vary trajectory 
    if t<2.4:                #Move in a straight line 
        Fl = 2.7 
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        Fr = 2.7 
    elif t<10.6665:          #Move in a circle 
        Fl = 1.4 
        Fr = 2.7 
    elif t<11.84589:         #Move in a straight line 
        Fl = 2.7 
        Fr = 2.7 
    else:                    #drift to stop 
        Fl = 0 
        Fr = 0 
     
    vl = X[1]*cos(X[4])+X[3]*sin(X[4])-X[5]*r          #velocity at the left wheel 
    vr = X[1]*cos(X[4])+X[3]*sin(X[4])+X[5]*r          #velocity at the right wheel 
    vn = -X[1]*sin(X[4])+X[3]*cos(X[4])                #normal velocity of the Roomba 
     
    Fdrag = kdrag*(vr*abs(vr)+vl*abs(vl))              #tangential drag force for both wheels 
    Fnorm = kn*vn*abs(vn)                              #force normal to the Roomba 
    Ftangent = Fl + Fr - Fdrag                         #force tangential to the Roomba 
     
    xdot = X[1]                                        #velocity in x direction 
    xddot = (Ftangent*cos(X[4])+2*sin(X[4])*Fnorm) / m #acceleration in x direction 
    ydot = X[3]                                        #velocity in y direction 
    yddot = (Ftangent*sin(X[4])-2*cos(X[4])*Fnorm) / m #acceleration in y direction 
    thetadot = X[5]                                    #angular velocity 
    thetaddot = (Fr - Fl - kdrag*vr*abs(vr) + kdrag*vl*abs(vl))/(0.5*m*r) #net torque 
   
    dX = [xdot,xddot,ydot,yddot,thetadot,thetaddot]    #form the Jacobian 
     
    dXa = array(dX) 
    dXa = dXa.transpose() 
    return dXa 
 
def plot_data(XX,type=1): 
    """Plot the results from the solution of the ODE 
    type=1 : Trajectory 
    type=2 : Displacement 
    type=3 : Heading 
    type=4 : Information about the movement of the Roomba""" 
    if type == 1: 
        quiver(XX[:,0],XX[:,2],XX[:,1],XX[:,3]) 
        xlabel('x(m)') 
        ylabel('y(m)') 
        title('Trajectory of the Roomba')  
        axis('equal')  
        show() 
    elif type == 2: 
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        plot(tt,XX[:,0],label='x') 
        hold(True) 
        plot(tt,XX[:,2],label='y') 
        legend() 
        xlabel('t(s)') 
        ylabel('displacement(m)') 
        title('Displacement of the Roomba')  
        show() 
    elif type == 3: 
        plot(tt,XX[:,4],label='theta') 
        xlabel('t(s)') 
        ylabel('theta(radians)') 
        title('Heading of the Roomba')  
        show() 
    elif type == 4: 
        width =  max(XX[:,0])-min(XX[:,0]) 
        center = (max(XX[:,0])+min(XX[:,0]))/2.0 
        height = max(XX[:,2])-min(XX[:,2]) 
        print "Width: %f, Height: %f, Center: %f " %(width, height, center) 
     
XX,infodict = odeint(dX_dt, x0, tt, full_output=True)     #Solve the ODE 
plot_data(XX,1)                                           #plot the data 
 
 


