
 - 1 -

Matt Ritter, Jay Gorasia, Leslie Velez
Dynamics

Application Problem 2
November 21, 2008

Roomba Robot Simulation

Introduction
The goal of this application problem is to model a Roomba robot as a two dimensional rigid body
with spatial extent, verify the model we develop, and apply inverse kinematics to get the
Roomba to follow a specified trajectory. We use a free body diagram of the Roomba, while
applying what we have learned about coordinate frame transforms, to develop a set of
governing equations. From there we use the governing equations, and other necessary
relationships, to create a simulation in Python. The model is verified through this simulation by
looking at the displacement and trajectory of the Roomba. We conclude with inverse kinematics
where we control the Roomba’s motion from the end path we want the Roomba to follow.

The Model
In order to accurately abstract the Roomba and create a valuable model, we began by
developing an understanding of the kinematics of the Roomba. We did this by drawing a free
body diagram and identifying our coordinate frames (Figure 1). The motion of the Roomba
required that we make use of two reference frames. Both are in rectangular coordinate systems.
The first is the stationary frame X-Y, with Z coming out of the page (as per the right hand rule).
The second is the t-n frame, indicating the tangential and normal directions, which captures the
rotation of the Roomba relative to the stationary frame. The origin of X-Y is fixed and set at an
arbitrary location, while the origin of t-n is fixed to the center of the Roomba (center of mass)
and moves relative to the X-Y coordinate frame. This frame is stationary relative to the wheels.
Since the Roomba can only move forward and rotate, the combination of these two frames is
satisfactory in capturing the overall motion.

Figure 1: This figure shows the free body diagram of the Roomba along with the
necessary reference frames. There are two rectangular reference frames used to
capture the Roomba’s motion: X-Y and t-n. X-Y is stationary and t-n rotates and
translates as the Roomba moves. The angle theta is used to control the rotation of the

 - 2 -

reference frame t-n, and with that, the forward direction of the Roomba. For the
direction of forces, we are taking velocity to be positive in the positive X and Y-
directions.

Governing Equations
Using the free body diagram and the selected reference frames (Figure 1), we were able to
determine the kinetics of the Roomba, which are presented in the form of the equations of
motion. Since we are modeling the Roomba in two dimensions, the Roomba can be thought of
as a thin disk, with center of mass at the origin of t-n. Applying the kinetics by summing the
forces and moments, leads to three governing equations: forces in the X-direction (1), forces in
the Y-direction (2), and moments about the center of the Roomba (3). We initially derived the
equations in the t-n frame, and then used coordinate frame transforms to express them in the
X-Y frame. This allows us to look at the Roomba from the stationary frame and understand both
its translation and rotation.

Sum of Forces:

() θθ sin2cos,, nldragrdragrl FFFFFxm −+++= (1)

() θθ cos2sin,, nldragrdragrl FFFFFym ++++= (2)

Sum of Moments:

rFFFFI ldragrdraglr)(,, +−−=θ (3)

It is important to note that the sign of the forces due to drag on each of the wheels, as well as
the normal force, is positive in the equations listed above but these forces do act as indicated in
the free body diagram. The free body diagram was used as an aid to determine the governing
equations and gain a qualitative understanding of how the Roomba moves. However, the
equations are used in our simulation so, in an effort to keep the equations consistent and let the
equations generate the appropriate signs, we have included the direction of the drag forces as
negatives in our constitutive relationships (Equations (7)-(10), to follow).

The factor of 2 in the last term of Equations (1) and (2) comes from the inclusion of the normal
force from each wheel of the Roomba. The forces are the same on each wheel in terms of both
magnitude and direction.

Additional Equations & Constitutive Relationships
In order to use the governing equations in a simulation, we must put them in a form where we
know the value of each term. The force on each wheel is known, as we are prescribed a value
for the maximum force. Including our constitutive relationships is the last step in abstraction
and allows us to write the equations of motion in known terms.

For use in our simulation, we have determined additional equations that make use of known
values and allow us to define unknown values in our equations of motion. The velocity of the
Roomba in the n-direction, as well as the velocity of each wheel, is presented in Equations (4),
(5), and (6). Each of these equations has been developed using coordinate frame transforms.
This enables us to express the velocities with respect to the stationary X-Y frame.

 - 3 -

θθ cossin yxVn +−= (4)

ryxVl θθθ −+= sincos (5)

ryxVr θθθ ++= sincos (6)

The first constitutive relationship is for the mass moment of inertia. This equation (7) is for a
circular disk or plate rotating about its z-axis, which runs through the center of mass of the disc.
It assumes that the disk is of constant density and, thus, also that the center of mass is at the
center of the disk.

The constitutive relationships for force of drag on the wheels, and also the normal force on the
wheels, involve the velocity of the wheel in a specific direction, along with a prescribed or
determined coefficient of drag. These relationships stem from a quadratic drag model for
viscous drag. Equation (8) shows the relationship for the normal force. This is necessary to
ensure minimal translation in the n-direction. This coefficient is arbitrarily set at a value high
enough to render this translation insignificant. Equations (9) and (10) show the relationship for
the tangential drag force on each wheel. The value of the drag coefficients were prescribed as

m
Nskn

2

1000= and
m

Nskdrag

2

4.3= . The absolute value of one velocity in each of the

constitutive relationships is in place to ensure that the force is acting in the direction opposite
the motion of the Roomba.

Constitutive Relationships:

2

2
1 mrI = (7)

nnnn VVkF −= (8)

rrdragrdrag VVkF −=, (9)

lldragldrag VVkF −=, (10)

We determined the final governing equations by inserting the constitutive relationships.
Equation (11) governs the angular acceleration, while Equations (12) and (13) specify the linear
acceleration in the X-direction and Y-direction, respectively.

Final Equations of Motion:

()()[]
mr

VVVVkFF llrrdraglr +−−
=

2
θ (11)

 - 4 -

()()[] ()
m

VVkVVVVkFF
x nnnllrrdragrl θθ sin2cos −−+−+
= (12)

()()[] ()
m

VVkVVVVkFF
y nnnllrrdragrl θθ cos2sin −++−+
= (13)

The final governing equations can be expressed in the state-vector form, which allows for easy
manipulation within the computer simulation. This form is presented in Equation (14). The
variable we have selected to represent our vector is X. Vector X contains information about the

position (x , y ,θ) and velocity (x , y ,θ) of the Roomba.

[]
()()[] ()[]

[]
()()[] ()[]

[]
()()[][]

+−−=

−++−+=

−−+−+=

=

=

mrVVVVkFF
X

mVVkVVVVkFFy
X

mVVkVVVVkFFx
X

y
y
x
x

X

llrrdraglr

nnnllrrdragrl

nnnllrrdragrl

2
5

cos2sin
3

sin2cos
1

θ

θθ

θθ

θ
θ

(14)

Model Verification
In order to verify our model, we wrote a computer simulation using Python. We did this within
the PyLab environment, which allowed us to use several modules valuable modules to run our
simulation. Our simulation uses an ODE solver with a slope function. The slope function takes
inputs from our state space and returns the first derivative (Jacobian matrix) of our variables.
The simulation includes logic statements which use time to vary forces. We send it a time and it
applies the proper forces to the left and right wheels of the Roomba model. Our code
commented code is provided in the Appendix.

To verify that our model was working appropriately, we simulated two simple trajectories.
Simple simulations allow us to compare results with our intuition to find bugs in the code and
errors in our equations of motion.

Straight Line Trajectory
The first simple trajectory is a straight line motion. The Roomba follows a straight line for 2
seconds as can be seen in Figure 2a. The Roomba starts at the origin of the X-Y reference frame
(0m, 0m), and moves to (1.4m, 0.8m). The arrows indicate are proportional to the magnitude of
the velocity of the Roomba at different locations within its trajectory. As expected, the arrows
close to (0m, 0m) are small and get larger quickly as the Roomba reaches its cruising velocity.
During the initial movement, the Roomba must overcome friction. The input generating this
movement is the constant maximum force (NF 7.2max =) applied to each wheel.

When the simulation stops running (after 2 seconds), the Roomba’s velocity is still the same as it
was the moment immediately before. The Roomba has not been slowed at all, so the straight
line trajectory concludes with an arrow of the same size as the moment before.

 - 5 -

Figure 2b illustrates the displacement of the Roomba in the X and Y directions over time. The
movement in both directions shows slight curvature initially which corresponds to the increase
in velocity of the Roomba.

Figure 2: This figure shows the straight line trajectory within the X-Y reference frame
(a) and the displacement over time (b) of the Roomba. The Roomba started off from
rest with an initial velocity of zero and a 30º heading. A constant force of 2.7 N was
applied at both wheels. The arrows in (a) indicate the magnitude and direction of the
velocity. In (b), the blue line shows the displacement in X and the green line shows the
displacement in Y.

Circular Trajectory
Another simple trajectory used to verify the accuracy and functionality of our simulation is that
of a circle. To do this, we input a force of 2.7 N to just the left wheel, while the right wheel
received no input force. This example tests the behavior of the model and helps us to verify that
the model is obeying kinematic constraints. The trajectory and displacement of the center of
mass of the Roomba as it moves in a circle is shown in Figure 3.

The arrows in (a) are proportional to the magnitude and direction of the velocity. The Roomba
starts off with a velocity of 0 m/s, and increases to a constant velocity as it completes the
trajectory. The arrows also show that the heading of the Roomba is tangent to the circle at all
times. This is a meaningful way for us to verify that the kinematic constraints within the
equations of motion are included correctly and that our model is functioning appropriately.

Plot (b) shows the displacement of the center of mass in both the X-direction and the Y-direction
over time. This is helpful in verifying that the model behaved as expected and did in fact follow
the trajectory as indicated in (a). When approximately 0.6 seconds have elapsed, the Roomba is
at about (0.9m, -0.9m) as seen in (a). This is the maximum displacement from the origin in the X-
direction, which means that it should be the maximum peak point in plot (b). Looking at plot (b),
this is confirmed. The blue line (displacement of X) peaks at about 0.9m, while the green line
(displacement of Y) is at about -0.9 m. It takes the Roomba just over 2 seconds to complete the
circular trajectory.

 - 6 -

Figure 3: This figure shows the circular trajectory within the X-Y reference frame (a)
and the displacement over time (b) as the Roomba moves in circle. The Roomba
started off from rest with an initial velocity of zero. A constant force of 2.7 N was
applied at the left wheel, while the right wheel received no input force. The arrows in
(a) indicate the magnitude and direction of the velocity. In (b), the blue line shows the
displacement in X and the green line shows the displacement in Y.

One additional way to verify that the heading is always tangent to the trajectory is to plot the
angle (θ) against time. As can be seen in Figure 4, the Roomba starts off at 0 radians and
progresses to π2 radians over time. The angle is negative because the Roomba is turning right
and we originally defined theta positive according to the right hand rule (Figure 1). The curve at
the start of the motion is due to the Roomba starting from a resting position. The data set soon
becomes linear, indicating constant velocity. The illustration of the Roomba reaching a constant
velocity coincides with the size of the arrows shown on the trajectory in Figure 3a.

Figure 4: This plot shows the Roomba’s heading over time as it moves in a circle.
Moving in a complete circle means that the Roomba will move from 0 radians to

π2− radians. The Roomba starts from rest, so there is a slight curve initially.
However, the Roomba soon reached a constant velocity as expected.

By modeling the straight line and circular trajectories, we were able to verify that our equations
of motion are correct and that our simulation behaves as it should. This is an important step in
the process of creating a working simulation because it allows us to trust the simulation and its
results in more complicated trials.

 - 7 -

Inverse Kinematics
With our developed model, we can now work backwards through kinematics to get the Roomba
to follow a desired trajectory. Figure 5 shows the trajectory the Roomba followed. Plot (a) shows
the motion, with arrows indicating magnitude and direction of the velocity. The arrows are
always tangent to the circle showing the heading of the Roomba. The Roomba moves in a
straight line for 2m, then complete a 1m radius circle, and then returns to where it started the
circle to continue moving forward for 2 additional meters.

Plot (b) of Figure 5 shows the displacement of the Roomba in the X and Y directions over time.
The blue line indicates the motion in the X-direction, while the green line indicates the motion in
the Y-direction. Initially and finally, the Roomba is just moving in the X-direction and so the Y-
direction displacement is zero meters. At 2.4 seconds, the Roomba begins to move in a circle. It
completes the circle at t=10.7 seconds, and continues forward again in the X-direction. After
about 11.8 seconds the input force on the wheels is zero and the Roomba coasts to a stop, due
to the dynamic friction. All the times were determined empirically.

Figure 5: These plots show the trajectory and displacement over time of the center of
mass of the Roomba. The arrows in (a) indicate the direction and magnitude of the
velocity of the Roomba through the course of its trajectory. The Roomba coasts to a
stop as can be seen by the arrows getting smaller at the end of the trajectory. Plot (b)
shows the displacement over time. As expected, the displacement in the Y-direction is
at zero meters before and after the Roomba completed the circle.

This trajectory was input by varying the forces to the wheels at different times during the
Roomba’s motion. The specific piece of code that controls the motion is shown in Figure 6. The
first if statement and the last two show the Roomba moving in a straight line; both wheels
receive the same force. The second statement shows the circular movement. The Roomba
moves counter clockwise due to a greater force input to its right wheel.

 - 8 -

Figure 6: Part of the code used to control the Roomba and satisfy the inverse
kinematics problem is presented above. The forces are varied at different times within
the complete trajectory so that the Roomba will respond as desired.

We were successful in using inverse kinematics to control the trajectory of the Roomba. The
Roomba was able to complete this trajectory in approximately 18 seconds. We slowed the
Roomba down (stopped inputting force) after about 11.8 seconds. This had an effect on the
time it takes the Roomba to complete the entire trajectory. Were we to allow the Roomba to
continue moving in a straight line in the X-direction after reaching 4 meters, and thus keep the
constant maximum force input to the wheels, the Roomba could have completed the trajectory
in about 14.3 seconds.

Conclusion
We were able to successfully create a model of a Roomba by developing the equations of
motion of the Roomba in a global reference frame. We created a simulation of our model in
Python and used test cases to verify that our model was accurate and that our simulation was
controlling the behavior of the model appropriately. Finally, we were able to use inverse
kinematics to specify the trajectory of the Roomba.

Reflection and Learning
We learned a lot from completing this application problem. We were able to apply kinetics,
kinematics, and constitutive relationships to determine the equations of motion. The application
problem is a fairly general use of rigid body dynamics, so it gave us widely applicable experience
in modeling simple systems.

We started with a free body diagram and clearly indicated our reference frames. This allowed us
to discuss all the forces on the Roomba and translate the diagram into governing equations. We
used coordinate frame transfers to express the motion of the Roomba in the global reference
frame, and then put the resulting equations into a simulation. The inevitable debugging process
began at this point, and we iterated back through the free body diagram and governing
equations until the test cases of the code worked as expected.

One of the most significant and beneficial things we learned was the importance of test cases.
We were able to see how they can be helpful in verifying that the equations of motion are
correct and also that our code functions properly. This is really important in verifying that the
model obeys the kinematic constraints.

 - 9 -

Doing the simulation in Python worked out well. There was a learning curve that had to be
overcome. However, we were able to learn how to use Python in the PyLab environment and
gain experience in working with this language. We feel that this will be a valuable skill for us in
our future endeavors.

We feel that we have also improved in the area of technical writing. We worked to clearly
illustrate our process to the problem, conclusions, and learning. We used equations, figures, and
plots to supplement our explanations. This application problem was a great way for us to use
tools we have acquired in the Dynamics Course and become more confident in using them with
complicated problems.

 - 10 -

Appendix

Simulation Code
Application problem 2
Roomba simulation
November 20 2008
by J. Gorasia, M. Ritter, L. Velez

from numpy import *
from pylab import *
from scipy.integrate import odeint
import math

Initial Conditions
The "state" of the system is {x, \dot(x),y, \dot{y},theta,\dot{theta}}^T
x0 = zeros(6)
#x0[4] = math.radians(30) # heading in radians

Time Bounds
t0 = 0.0 #Initial time [s]
tF = 18 #Final time [s]
tt = linspace(t0,tF,50) #Time array for use in ode solver

Roomba information
d = 0.33 #Diameter [m]
r = d/2.0 #Radius [m]
m = 2.7 #Mass [kg]
I = (0.5*m)*(r**2) #Inertia about the center, assuming it is like a disc [kgm^2]
f_max = 2.7 #maximum output force of the wheels [N]
kdrag = 3.4 #drag tangential to motion of the wheels [N/(m/s)^2]
kn = 1000 #drag normal to motion of the wheels [N/(m/s)^2]

def sign(x):
 """Returns the sign of the input value"""
 if x < 0: return -1
 elif x > 0: return 1
 else: return 0

def dX_dt(X, t=0):
 """
 Return the Jacobian (first-derivative) of the state.
 Both the input and output need to be arrays
 """
 #Vary input force to vary trajectory
 if t<2.4: #Move in a straight line
 Fl = 2.7

 - 11 -

 Fr = 2.7
 elif t<10.6665: #Move in a circle
 Fl = 1.4
 Fr = 2.7
 elif t<11.84589: #Move in a straight line
 Fl = 2.7
 Fr = 2.7
 else: #drift to stop
 Fl = 0
 Fr = 0

 vl = X[1]*cos(X[4])+X[3]*sin(X[4])-X[5]*r #velocity at the left wheel
 vr = X[1]*cos(X[4])+X[3]*sin(X[4])+X[5]*r #velocity at the right wheel
 vn = -X[1]*sin(X[4])+X[3]*cos(X[4]) #normal velocity of the Roomba

 Fdrag = kdrag*(vr*abs(vr)+vl*abs(vl)) #tangential drag force for both wheels
 Fnorm = kn*vn*abs(vn) #force normal to the Roomba
 Ftangent = Fl + Fr - Fdrag #force tangential to the Roomba

 xdot = X[1] #velocity in x direction
 xddot = (Ftangent*cos(X[4])+2*sin(X[4])*Fnorm) / m #acceleration in x direction
 ydot = X[3] #velocity in y direction
 yddot = (Ftangent*sin(X[4])-2*cos(X[4])*Fnorm) / m #acceleration in y direction
 thetadot = X[5] #angular velocity
 thetaddot = (Fr - Fl - kdrag*vr*abs(vr) + kdrag*vl*abs(vl))/(0.5*m*r) #net torque

 dX = [xdot,xddot,ydot,yddot,thetadot,thetaddot] #form the Jacobian

 dXa = array(dX)
 dXa = dXa.transpose()
 return dXa

def plot_data(XX,type=1):
 """Plot the results from the solution of the ODE
 type=1 : Trajectory
 type=2 : Displacement
 type=3 : Heading
 type=4 : Information about the movement of the Roomba"""
 if type == 1:
 quiver(XX[:,0],XX[:,2],XX[:,1],XX[:,3])
 xlabel('x(m)')
 ylabel('y(m)')
 title('Trajectory of the Roomba')
 axis('equal')
 show()
 elif type == 2:

 - 12 -

 plot(tt,XX[:,0],label='x')
 hold(True)
 plot(tt,XX[:,2],label='y')
 legend()
 xlabel('t(s)')
 ylabel('displacement(m)')
 title('Displacement of the Roomba')
 show()
 elif type == 3:
 plot(tt,XX[:,4],label='theta')
 xlabel('t(s)')
 ylabel('theta(radians)')
 title('Heading of the Roomba')
 show()
 elif type == 4:
 width = max(XX[:,0])-min(XX[:,0])
 center = (max(XX[:,0])+min(XX[:,0]))/2.0
 height = max(XX[:,2])-min(XX[:,2])
 print "Width: %f, Height: %f, Center: %f " %(width, height, center)

XX,infodict = odeint(dX_dt, x0, tt, full_output=True) #Solve the ODE
plot_data(XX,1) #plot the data

