PIC MCU WEB SERVER

J. Gorasia

version 0.1.1

Contents

Introduction

1.1 Audience e e
1.2 Capabilities e
1.3 ADOUL INE ot e e e e e
1.4 Acknowledgments . . .-, . . . L L

Ethernet Basics

2.1 TCP/IP Model e
211 Layers e e
2.1.2 ACTONIVINS .« . . . o v v v o e e

2.2 Physical Medium Overview

2.3 Ethernet Specifications L e e

Build the web server

3.1 SubSYStEIIS L
3.1.1 PIC Microcoutroller (PICI8F4620)
3.1.2 Ethernet Network Controller (ENC28J60)
3.1.3 Serial EEPROM (25LC256)
3.1.4 Parallel LCD (Hitachi 44780 based)

3.2 Cireuit dIagramn« o

3.3 POWer O testo e e

Getting the web server operational

4.1 Basic environmetnt considerations L L. . e e e e e e e e
4.2 Obtain TCP/IP Stack
4.3 Build and Import e e e
4.4 Test cOnUeCtiON v v v v e
4.5 Build webpage binary fileo
4.6 Upload webpages L
4.7 Test webpages L

Webpages and modifying the stack

51 Basic AJAX . . L e
5.2 Transmit Information e e e
5.3 Receive information L e
5.4 Addiug periodic functions 0L oL e

TCP/IP: In depth

6.1 Frame SiZes
6.2 MAC Addresses
6.3 Stream Coustrucion/Deconstruction Lo L
6.4 Stream thming
6.5 10 MD/8 Stream CONENtS 0 o vt i e e
6.6 Auto Negotlallon v v 0 0 vt e e
6.7 Auto Crossover

10
10
10
10
11
11
11
11

14
14
14
14
14
15
16
17

18
18
19
19
20

7 Appendix
7.1 Build of materials

Chapter 1

Introduction

1.1 Audience

This document is a guide to develop a simple web server, the WEB1 using 8 bit PIC Microcontrollers. Preferably,
the reader would have previous experience with PIC MCUs, and using the C18 compiler. It is also expected that
the reader have some breadboarding skills, and the ability to understand basic circuit concepts. A knowledge of
TCP/IP and/or Ethernet is not required.

1.2 Capabilities

Microchip developed a TCP/IP stack for use with their range of Ethernet enabled products, like the ENC29J60
and PIC18F97J60. This software stack is enables these products to become a functioning web server. Among the
services the web server can carry out is: HTTP, FTP and DHCP. This makes it possible to use these products for
applications like remote sensing, home automation and others.

1.3 About me
I am a Mechanical Engineering student at Franklin W. Olin College of Engineering in Needham, MA. This book is
the culmination of a semester long independent study on developing a web server using PIC MCUs.

1.4 Acknowledgments

This endeavor would have been much more difficult if not for the advice of Professor Bradley Minch and the previous
work by Jorge Amodio. T would also like to thank Professor Gill Pratt for providing me with the space to work,
and the Boston Engineering SCOPE team for their endless entertainment.

Chapter 2

Ethernet Basics

As Alaska Senator Ted Stevens said, the Internet is a series of tubes. These tubes are very important as the Internet
has boomed to become a crucial medium for communication. The Internet is a global system of interconnected com-
puter networks that interchange data by packet switching using the standardized Internet Protocol Suite (TCP/IP).
It is a "network of networks" that consists of millions of private and public, academic, business, and government
networks of local to global scope that are linked by copper wires, fiber-optic cables, wireless connections, and other
technologies. The Internet carries various information resources and services, such as electronic mail, online chat,
file transfer and file sharing, online gamning, and the inter-linked hypertext documents and other resources of the
World Wide Web (WWW).

Ethernet is an asynchronous Carrier Sense Multiple Access with Collision Detect (CSMA /CD) protocol /interface
with a payload size of 45-1500 octets.It defines a number of wiring and signaling standards for the Physical Layer
of the OSI networking model, through means of network access at the Media Access Control (MAC),/Data Link
Layer, and a common addressing format.

Ethernet is a data link and physical layer protocol defined by the IEEE 802.3 specification *.It comes in many
flavors, defined by maximum bit rate, mode of transmission and physical transmission medium.

e Maximum Bit Rate (Mbits/s): 10,100,100,etc
e Mode of transmission: Broadband, Baseband
e Physical Transmission Medium: Coax, Fiber, UTP,etc

The rest of this chapter will cover more details about the TCP/IP protocol. It is useful to learn more about this
before diving into the PIC MCU implementation as it will make many concepts and terminology more understand-
able.

2.1 TCP/IP Model

2.1.1 Layers

To understand how Ethernet works, it is first necessary to understand the concept of packet encapsulation, and
how the protocol stack fits into this concept. The transfer protocol is divided up into many layers. Each layer is
responsible for a particular level of functionality. Each higher layer in the model utilizes the underlying layers in
a somewhat independent fashion. The interesting result of this is that the underlying technologies of the different
layers have progressed independently of each other. For instance,

HEEE 802.3 ETHERNET - http://www.ieee802.0rg/3/

Application Laver

Telnet

SMTP

HTTP
FTP

w a4 o
222329
Z2 0 C%Q

Transport Layer
Network Layer

Data Link Layer

Physical Layer

Figure 2.1: TCP/IP Stack. Notice how the different layers have many different kinds of services. A packet will only
have to use a single service from each layer as it travels down the stack.

As Figure 2.1 shows, the TCP/IP model is broken up into five layers. To describe their function, we will track
the path of a packet traveling down the stack.

1. A web browser would generate a HTTP request using an application specific command.

2. This request would be passed down to the TCP layer, which would construct a TCP packet consisting of a
TCP header and TCP data. TCP header contains information particular to the TCP protocol, such as packet
sequencing information, checksum information? and the source and destination port number (HTTP generally
has a port number of 80%).

3. At the IP protocol layer, an IP datagram is constructed to hold the TCP packet. The IP header contains
information about type of service, checksum information, protocol type (06h for TCP) and the source and
destination IP addresses. The data field of the IP datagram contains the complete TCP packet to be trans-
mitted.

4. At the data link/physical layer, the IP datagram is transported across the network using the IEEE 802.3
protocol. A MAC (Media Access Control) frame consists of a MAC header and a MAC payload (data). The
MAC header contains information such as the source MAC address, the destination MAC address, and the
length of the frame. The payload field contains he complete IP datagram to be transported.

2for basic error checking
3For a complete listing, visit: http://www.iana.org/assignments/port-numbers

"—‘} Upper Layer Message l
: 3T 4
9 Lippsr 4 ‘ 1 Ry i

Laysr
Headers
TCPIUDP Message I
i " 4
TOP f fbomrrree s epame) R | uppertayer b yEP 1
UDP by Header | % | Application) Data] b A upop |

Figure 2.2: The evolution of the packet as it travels down the stack. Notice how the message stays essentially the
same, and just gets added information as it travels down the stack.

2.1.2 Acronyms

There are many acronyms that emerge when looking through the stack. They are not very intuitively named, and
can be very daunting for beginners. Here is a list of the ones implemented in this stack. Note that this is not a
complete list of all the different acronyms in the TCP/IP model.

Acronym Full Name

Function

ARP Address Resolution Protocol Method for finding a host’s link layer (hardware)
address when ounly its Internet Layer (IP) or
some other Network Layer address is known
DNS Domain Name Server Hierarchical naming system for computers,
services, or any resource participating in the
Internet, which translates human readable names
into their numerical identifiers
DHCP Dynamic Host Configuration Protocol | Used by networked devices (clients) to obtain the
parameters necessary for operation in an Internet
Protocol network (IP address, ...)

FTP File Transfer Protocol Used to transfer data from one computer to
another through the network.
HTTP HyperText Transfer Protocol Used for retrieving inter-linked text documents
(hypertext)
SNTP Simple Network Time Protocol Internet protocol used to synchronize the clocks
of computers to some time reference
SMTP Simple Mail Transfer Protocol Internet standard for electronic mail (e-mail)
transmission across Internet Protocol (IP)
networks
TCP Transmission Control Protocol TCP provides reliable, ordered delivery of a

stream of bytes from one program on one
computer to another program on another

computer.
UDP User Datagram Protocol UDP is TCP without as much overhead and thus
less error checking.
ICMP Internet Control Message Protocol Used by networked devices to communicate with
each other, primarily to transmit error messages.
1P Internet Protocol The stack implements TPv4.
Telnet Telecommunication network Provides access to a command-line interface on a
remote machine
RARP Reverse Address Resolution Protocol | Used to translate hardware interface addresses to

protocol addresses, such as a MAC address to an
IP address.

2.2 Physical Medium Overview

If vou slice open an Ethernet cable, you will see 8 different wires. They exist as 4 twisted pairs. where each pair
cousists of one solid colored wire aud one with white stripes. The green wires are the transmit signal while the
orange cables are the receive signal. The blue and brown wires are only used by Gigabir Ethernet.

Twisting wires decreases interference because the loop area between the wires (which determines the magnetic
coupling into the signal) is reduced. The two wires carry equal aud opposite signals (differential mode) which are
combined by addition at the destination. The common-mode noise from the two wires (mostly) cancel each other
i this addition because the two wires have similar amounts of EMI that are 180 degrees out of phase. This results
in the same effect as subtraction. Differential mode also reduces electromagnetic radiation from the cable, along
with the attenuation that it causes®.

The jack is a RJ45 jack which is a standard communications jack. It is possible to purchase jacks with integrated
magnetics {(used to filter the signal) and LEDs {indicators for the operation of the device). This is recommended
as they are not much more expensive than the usual jacks.

There are two indicator LEDs(usually) on the jack. The left one is amber or green and shows the connection
speed while the right one is green and shows the signal activity. If the left LED is amber, the device is acting
as a Gigabit connection, if green, the device is acting as a 100-Mbps connection while if off, it is operating as a

ihttp://en.wikipedia.org/wiki/Twisted_pair

Wire Color | Wire Diagram

10Base-T Signal

RISPIN®| " reean) (T568A) | 100Base-TX Signal
1 VWhite/Green | EZ—aw) Transmit+
I 2 Green =] TIBHSI'I;;: ;
B 3 White/Orange | E=Z—=7) Receive+ o
4 Blue === Unused e
i _5) White/Blue r—) Unused B 12345678
5 | Omnge | === Recewve- W
,__?_. = ‘}{Yhit_eiemwn == Ur&‘fe?;_._._ 87654321 '
f 8 Brown = Unused RJ45 Plug and Jack Pin Out

Straight-Through Cable Pin Out for T568A

Figure 2.3: Ethernet cable and RJ45 pin overview.
ethernetcables.html

Taken from http://www.ertyu.org/steven_nikkel/

10-Mbps connection. If the right LED is blinking, there is activity on the port. If it is on, that means a link has
been established. However, if it is off, no link has been established.

2.3 Ethernet Specifications

As a final detail before we get into the implementation, we need to discuss the contents of the final IP packet that
is sent between networked devices. This is informative as it really helps you appreciate the design that went into
it. The following information is from AN1120 fromn Microchip,” Ethernet Theory of Operation”

1. Preamble - Seven octets of 55h. The preamble is present to allow the receiver to lock onto the stream of data
before the actual frame arrives.

2. Start-of-Frame Delimiter - 10101011b (as seen on the physical medium). The SFD is sometimes considered
to be part of the preamble. This is why the preamble is sometimes described as eight octets.

3. Destination Address - The 6-octet MAC address of the destination hardware
4. Source Address - The 6-octet MAC address of the source hardware.

5. Length/Type - If the value in this 2-octet field is < 1500 (decimal), this represents the number of octets in
the payload. If the value is > 1536, this represents the EtherType (payload type). The following are the most
common EtherType values: IPv4 — 0800h, IPv6 — 86DDh, ARP — 0806h, RARP — 8035h.

6. Payload - The client data, such as an IP datagram, etc. The minimum payload size is 46 octets; the max-
imum payload size is 1500 octets. While payloads below or above these limits do not meet the IEEE 802.3
specification, there is varied support for these payloads depending on the particular vendor.

7. Pad - Since the minimum payload size is 46 octets, pad octets must be inserted to reach this minimum if the
payload size is less than 46 octets.

8. Frame Check Sequence (FCS) - The value of the 4-octet FCS field is calculated over the source address,
destination address, length/type, data and pad fields using a 32-bit Cyclic Redundancy Check (CRC).

9. End-of-Stream Delimiter (ESD) - In 100 Mb/s operation, the PHY transmits a /T/R/ symbol pair after the
FCS (during the inter-frame gap) to denote the end of the frame.

10. Special TP _IDL signal and network silence indicates the end of the frame.

104100 {EEE 802.3™ Frame

7 octets Preamble
1 octet Start Frame Delimiter (SFD)
€ octets Destination Address (DA}
& octets Source Address (SA)
Length (x 1500}
2octets Type (z 15361
48 ‘::‘”’5 Client Data (Payload)
1500 octets Pad (if necessary)
4 octets Frame Check Sequence (FC8)

Figure 2.4: Basic IP frame format

Chapter 3

Build the web server

In this chapter, the steps needed to build the web server circuit is laid out. We will be using a PIC MCU with a
large memory as the TCP/IP protocol stack takes up a lot of data and program mermory. I broke up the circuit
into subsystems in order to better explain how they are to be wired.

3.1 Subsystems

3.1.1 PIC Microcontroller (PIC18F4620)

The PIC Microcontroller I chose was a PIC18F4620. It is a relatively normal PIC MCU with a large program
and data memory, 64 kbytes and 3968 bytes respectively. The pin numbering below is for the DIP version which I
used. Note that the smaller version, 18F2620 (or siwilar device) could be used as many(7) pins were used for the
LCD(labeled in green), which is optional, and 8 pins remain unused(labeled in blue) in this device.

Pin | Function Remarks Pin Function Remarks
1 MCLR hardware Master CLeaR 21 RD2 DG for LOD
2 ANO Analog Input 0 22 RD3 DT for LOD
3 AN1 Analog Input 1 (not set up) 23 RC4 SDI for SPI interface
4 RA2 LEDO, Status Indicator 24 RC5 SDO for SPI interface
5 RA3 LED1 25 TX Transmit for the USART
6 RA4 LED2 26 RX Receive he USART
7 RAS Enable for LOD 27 RD4 BS for LUD
8 REO Unused 28 RD5 By LOD
9 RE1 Unused 29 RD6 Unused
10 RE2 Unused 30 RD7 Unused
11 Vee 5V 31 VDD GND
12 Vdd Ground 32 VCC 5V
13 05C1 Oscillator in 33 IN 0 Push button 0
14 08C2 Oscillator out 34 IN_1 Push button 1
15 RCO Unused 35 ENC _INT Optional Input for ENC28J60 INT
16 RC1 Unused 36 ENC_CS ENC28J60 CS
17 RC2 Unused 37 | XPROM_CS 25LC256 Serial EEPROM CS
18 RC3 38 RESET Optional ENC28J60 RESET
19 RDO 39 PGC Clock signal for programming
20 RD1 40 PGD Data signal for programming

3.1.2 Ethernet Network Controller (ENC28J60)

The ENC28J60 does the hard work of providing the PASCAL layer of Ethernet connectivity to the PIC MCU. It
connects to the PIC MCU via SPL thus requires four pins of the MCU. Instead of building this circuit myself, T
went out and purchased the nic28 board from LJCV Electronics. This board has the RJ435 jack, ENC28160 chip, a
T4ACT125M chip and some discrete components. The 74ACT125M is a tri-state buffer, which allows the SPI bus
to be shared easily by reducing interference.

10

This circuit could just have as easily been put together, but buying this assembled board offers the advantage of
a compact package that is tested. It is easy to make mistakes wiring up this circuit, and buying a premade solution
prevents this from being a problem.

3.1.3 Serial EEPROM (25LC256)

Webpages are usually much too big to be stored in the program memory of the PIC MCU. By default the WEB1
server will use an external serial EEPROM to store the webpages. It is important to make sure that the webpages are
small enough to fit on the serial EEPROM. The stack reserves the first 64 bytes to save the application configuration
information, but the rest is available for use.

The commands to the EEPROM are pretty simple. To read more on it, consult the datasheet, and the C files
in the WEBI1 project.

3.1.4 Parallel LCD (Hitachi 44780 based)

LCDs are a great way to communicate with people, as they are able to display a lot of information, with relatively
simple commands. Most LCDs come with an LCD controller attached, the most popular one being the Hitachi
44780 chip. This makes the interface to the LCD very simple, requiring 11 pins at most: 8 data pins, one read/write,
one set /reset and one enable pin. You can also operate it in 4 bit mode, where only 4 data pins are used. The LCD
is capable of producing any of the ACSII characters using a very close to ACSII syntax. Many Japanese characters
are also possible. To find out more about the controller, as well as the timing sequence needed for its operation, go
to http://meteosat.pessac.free.fr/Cd_elect/Doc-CI/LCD/1lcd-htm/LCDY20Hitachi htm.

3.2 Circuit diagram

3.3 Power on test

To test if the circuit is working, plug an Ethernet cable into the RJ45 jack and into a network port. If you see the
LEDs light up, then you have the nic28 board operational. Everything should be all set, and you can proceed to
programming the PIC MCU.

If you have problems getting this working, an incremental approach would be best. The LEDs on the RJ45 will
light up if connected to a network and nothing else (other than power). You should be able to connect to the PIC
MCU using a programmer. If all else fails, just look through the circuit diagram to see if any mistakes occured.

T/T 1984g| seez ‘ot 120 52043313 NI - 9ee2(D)

q@ A
N3Y QR TA-8Z2TU :37LTL

JIN Bor8ZION3 - mNUmC ONS ON9 ONO ON9 aNg ONg ONg ONg ang

m a
i/e.w.\ ol B aty ‘3«/;‘\ imﬁ.\ iy
wE]eiE] ST 65 AT oy den
Py €0 fa v b
OGNS 5
08 ¥€ gz A
Aadun Dmmvmamm,ﬁm) . G I .
wne ! 5 4 g
abeion hrddng ¥ JWTEE-BVBERT
" FEf
+
w o
PEASY 40} YT NLZ ‘GEASYH UODIIS 404 YT WZE'Z = G i 0N
aNg ONS ON9 OND aNg aNg ang ang uNg NG
aty a3 %3“ 2 82N —
S 228 e
&3 & &5 5 Ll P] T a%%m
ZHIGZ n At LZI N [t 4 ¥ 89 u
esl -
- i RS0 ccccc S by AN ref- xuwm
a— > 1se RRERYE awon + b4 .
o0 Y1 by e 2528 wnow a1 arr
K& 1 jm * s 220 eor i AW —

Ll & mun 2 mum .hm. 35| 8037 o] Nl T ONg
< W o WA Sz-1 Y031 os-asrezony 09 eat yossy
& 8] & Gy 1s W £ sJ
m “mu m Mﬂ Huwmw Ec§ % @81 = zwm
g oo b5 <SEBE 13w Dy AW > 08
k3 5% -0 -] IN nv|m T % ane

~ 25 +lnogl BOXEX gy 5 LNOHTD
cabe]| [] MR RN o |
a4 M mnmwm“nw&.m,\ 0 07100 [[0 salﬁm,
- - ——
zr N I a5 —
VAAAS T I
2 NI
< LNOXTD
g 3 aNg
= 05
e} 9T
[N PP il 3
B4 e
&
in
[e]

Figure 3.1: NIC28

0l Add

opowy sliop AG ('Z-L010Id wWol pajdepe

0'-183m 3L

L g3am

J30

30NN

The connections to the right are all going towards the nic28. IMPORTANT. do not

Figure 3.22 WEB 1 circait.
connect RB2 and RB5to the INT and CLK of the nic28. Badness will ensue.

Chapter 4

Getting the web server operational

4.1 Basic environment considerations

Before you can begin doing anything, you need to get a working environment to develop in. All the code presented
here uses the MPLAB IDE (integrated development environment) from Microchip (version 8.10 at time of writing)
and the C18 compiler. This is useful as this allows us to develop in C, a much more enjoyable experience compared
to working in assembly.

To get MPLAB, visit this' site. MPLAB is distributed at no cost.

To get the C18 compiler, visit this site. If you waut a free student version, you have to register with Mi-
crochip. This will give you a 60 day trial of the full compiler, after which the code optimizations are disabled. The
optimizations are not required for the web server to function (the code still manages to fit on the PIC MCU).

You will now be all set to develop the web server.

4.2 Obtain TCP/IP Stack

The software for the stack is kept at xxxix. Extract the zip file and open up the Microchip MPLAB workspace,
Webl. Open up the file using MPLAB. You can also find a very similar stack at http://www.ljcv.net/files/
MCHPTCP_v3.75.6.zip. Use the PIC10T project, which is essentially the same as the WEBI.

4.3 Build and import

If your environment is set up correctly, all you need is to build the file. Then, using your programmer of choice (I
use the PICKIT?2) import the hex file into the pic18f4620.

Figure 4.1: The red box is to build the project

4.4 Test connection

Now, plug an Ethernet cable into the RJ11 jack of the circuit, and the other end into a wall socket. Alternatively,
use a crossover cable? and plug the cable into your computer’s LAN port instead.

Thttp://www.microchip.com/stellent /ideplg?ldcService= S5 GET PAGE&nodeld:=1406&dDocName =en019469& part =S W007002
2You could find this product from Amazon: Belkin Components CAT5E Crossover Cable, Red - 10ft

14

C:\Documents and Settings-jgorasiarping 18.

Pinging 18.33.98.13 with 32 bytes of data:

Reply from 18H.33.98. : hytes=3 ime

from 10.33.98.13: hyte 2 ime
leply from 18.33.98_13: hytes=32 ime
Reply From }] hytes 2 time

e B 1 T B -
Received
times in mi

¥ Lmum iims ,

C:\Documents and Settings\jgorasia?

Figure 4.2: Results from using the ping utility successfully.

In Windows, go to the command prompt, and use the ping utility to determine if the device can respond to
requests. By default, the DHCP module is disabled, thus the IP address of the device is 192.168.1.201 . It is not
recemmended to use static IP addresses when operating in a local area network?.

The results from the piug utility should look like below:

4.5 Build webpage binary file

To build the webpage, you need to use the MPFS utility (found under the Tools folder) in order to compress
webpages into a suitable size.

If vou selected the MPFS _USE EEPROM option to store the HTTP documents in an external serial EEPROM,
you must upload the file system image by using FTP or via the serial command interface with XMODEM.

First you must create a MPFS binary image of the HTTP server documents, to do so you must use the
MPFS.EXE utility passing as argunients the directory where the source documents are located (the example website
documents are in the html directory) and the name of the output file that will be later uploaded.

If your design includes the new Microchip 25LC1024 serial EEPROM, you must create the image using the
MPFS.EXE /1 option (24 bit addressing). Remember also to include the USE_25L.C1024 macro in your hardware
configuration file to include the appropriate code and settings for this memory device.

Double check that your image file does not exceed the available capacity of the EEPROM memory, the stack
reserves the first 64 bytes to save the application configuration information and the rest of the memory is available
for the HTTP documents image (which includes a simple File Allocation Table).

3Your network might have already allocated that [P address to another device, and you do not really have a way to find out, until
things start going wrong

roetSUEBLShUR] npfs20y.bin

Yin
H.HTH

I~DRATR.CGI"'

I~DATA.HTHL'

FEAT .HTH'

Figure 4.3: Using the MPFS utility. The utility converts the webpages into a binary file format suitable for storing
on an EEPROM

4.6 Upload webpages

To upload webpages to the device we can use au FTP transfer. FTP does not check for available memory space,
thus if you exceed the actual available memory, the code will wraparound and start writing over the previously
written FAT and documents.

The WEBI1 zip file includes MPFS images generated from the sample HTTP documents located in the html
directory. The file mpfsimg.bin is the MPFS binary image with the standard 16 bit addressing (for a 25LC256
or 24L.C256/512) and the mpfsimg_Lbin the binary image with 24 bit addressing (for a 25LC1024), both files are
located in the current version top directory.

To use transfer the webpages using ftp:

1. First open the command prompt

2. Type: ftp [device ip address|

You will be prompted for the username and password. By default they are fip and microchip respectively.
Then type: put [your binary file’s name/.

It will then show its progress, then announce “Transfer complete”.

CENC

Type quit to exit the program
Below is a screenshot of me performing these steps.

C:NEthernet \WEB1stools >F1 P 19.33.99.13
1.98.13.

A.33.98.13:C(none2>: ftp
sword reguired
sword:
2380 Logged in

frp> put HPFSimg.bin

288 Ok

158 Transferring data...

Butinununantnunmnennryiny

226 Transfer Complete

ftp: 27944 hytes sent in B.B3Seconds 231 .47Khytesssec.
ftp> 1

0 {

Figure 4.4: Using the fop utility in Windows

4.7 Test webpages

To test whether everything worked, open up a web browser, and type in the IP address of the device. You should
see the following. The webpage will not work well on browsers that have Javascript disabled as all the dynamic
elements of the site require Javascript. You would still be able to continually refresh the webpage to see the variables
update. Alternatively, go to http://|ip address]/index.cgi to see a version that does not require JavaScript. The
next chapter will tell how to build such webpages with dynamic content, and well as modify the TCP/IP stack in
order to add your own applications.

A3\ MicrocHie Microchip TCP/IP Stack
Home

#etlong

Statug

Date 1208
Time 112

AND 15

Butons 1111

LEDs 20000001

P Packet Counters
Tx 821
Rx 934

Figure 4.5: The homepage of the WEB1 webserver. This shows the dynamic variables and allows the some inter-
action with the two input buttons for the LEDs.

Chapter 5

Webpages and modifying the stack

In this chapter, I will cover how to create the webpages appropriate for PIC MCUs. You will need to create a few
CGl files in order to perform any interactive task with the webserver. Use the included files as a template.

5.1 Basic AJAX

Since we are creating dynamic webpages, we will need to use AJAX in order to update portions of the webpage,
without reloading the whole thing. AJAX stands for Asynchronous Javascipt And XML, a coucatenation of two
powerful technologies.

The first step is to add a script to the header of the file to determine the appropriate XMLHttpRequest to use.
The different browsers use different techniques, and using this script allows one to create webpages that can function
in multiple browsers. XMLHttpRequests are what is used by webpages to perform requests without refreshing the
entire page.
function GetXmlHrtplbjisctihandler)

{

var chiZmificep = null:
if{navigator. userAgent . indexOf

"} pell)

var lassiame = ©
Ef{navigator.appVersion. indexOL{ "y
{

Classhamwe = 7

obifmlBttp = new ActiveX(bject(ClassName):
obi¥miHctp. onreadystatechangs = handler;
return ohifmlBriyp:

1

catchie}

{
alert{ “irvoe . xv
retum:

obhi¥miHrep = new XHLHttpRequeat{):
chifZmlHttp.onload = handler:

b iZwlilctp. onerror « handler;
return obiEmiBren;

3
catehie}

{
alers(

Figure 5.1: XMLHTTPObject script to determine the appropriate XMLHttpRequest to use.

Then, another script needs to get the html file ready to execute the XMLHttpRequests.
Finally you have these other scripts that do stuff.

1Q

H function SvateChanged()

Af{oeifivep. readyitare == 2 |} xmlBtip readyState ==
{

document . gesElementByld{ v«
! regponssTert:
*wilfitsp = nullz
UpdateStatausl{y

7y

2s) . inasrBTRL-xmiftep.

EIS |

Figure 5.2: Set the html file to the right state for AJAX

5.2 Transmit information

The way you transfer information to the web server is using http GET statements. This executes a callback to the
HttpExecCmd function (located in main.c). The function will parse the input in the following way:
If the Http argument was : index.htm?name=Joe&age=25

e argv|0] — index.htm
e argv{l| — name

o argv|2] — Joe

e argv|3] — age

e argvid| — 25

The function will first find the appropriate CGI file to execute the commands through. By default, everything
reverts to the index.cgi page. Next, it will check the number for the command to execute. To simplify coding,
the current implementation only allows for single digit commands, thus only 10 commands. This limit is merely as
a means to simplify coding, and could be extended. The WEBL server will respond to two commands:

o [anypage]70=0: which toggles LED1
e [anypage] 70=1: which toggles LED2

Modifying this function is pretty easy. In main.c, the names of the callback commands are named (search for
CMD _LED1). Just add another command there with an appropriate single digit number. Then, go back to the
HttpExeecCmd function, look for the switch case statement that chooses commands and another command. You
can pretty much put any command you want into this.

5.3 Receive information
To receive information about from the web server, you need to use specific callback requests. The web server

processes all CGI files, looking for predefined commands. The format of all commands is % XX, where XX is some
hexadecimal number. Below is a list of the commands that are specified in the WEBI server.

Variable Name Value (0x00-0xFF) Function

VAR_LEDO 00
VAR_LEDI 01
VAR _LED2 10
VAR _LED3 11
VAR_LED4 2
VAR _LED5 3
VAR_LED6 14
VAR_LED? 5
VAR _ANAIN_ANO 02
AR_DIGINO 0d
VAR_DIGINI 0D
VAR_DIGIN? 0B
VAR_DIGINS O0F
VAR _STACK _VERSION i6
VAR _STACK DATE 7
VAR _IPCNTR_TX 20
VAR _IPCNTR_RX 21
VAR_DATE 22
VAR_TIME 23

To add more commands, just add another case to the case switch statement that scrolls through the different
variable cases. If the variable to be returned is just a single digit, the code is very easy. Just set *val to the
variable(look at the code. It will make a whole lot more sense). However, for longer variables you need to use to
following construct:

*val — variable|(BYTE)ref];

if (variable[(BYTE)ref] —— "\0")
return HTTP _END OF VAR,;

else if (variable[(BYTE)+ +ref| -~ "\0")
return HTTP_END OF VAR,

return ref

This construct is flexible enough to handle varlable of any length.

5.4 Adding periodic functions

There will be a need to preform periodic function like process an analog signal, or control some lights. These
processes should not take too much time, in order not to detract from the operation of the web server. An example
of a periodic function is provided in the ProcessIO function in main.c.

Currently, ProcessIO is used to process the input to the analog to digital converter. You could add other
processes to the ProcessIO function, or make a new fuuction similar to ProcessIO to handle them.

Chapter 6

TCP/IP: In depth

6.1 Frame Sizes

6.2 MAC Addresses

6.3 Stream Construcion/Deconstruction
6.4 Stream timing

6.5 10 Mb/s Stream contents

Machester encoding

6.6 Auto Negotiation

6.7 Auto Crossover

21

Chapter 7

Appendix

7.1 Build of materials

§ Name | Quantity | Digikey Part Number | Unit Price (§)]
PIC18F4620 I/P 1 PIC18F4620-1/P-ND 9.93
ENC28J60 1 ENC28J60/SP-ND 3.70
Solderless breadboard 1
10kQ2 resister 4

22

