

### Desktop Manufacturing Educational Products & Services Entrepreneurship and New Ventures- Prof. Santinelli

Fall 2009

Ross Gale Jayesh Gorasia Ryan Harris

# Engineering Education is in Trouble

Declining Enrollment<sub>11</sub>

Low Retention – 56%[2]

Decreasing practicality of in-class lecture learning<sup>33</sup>



Undergraduate Engineering Enrollments

http://www.engtrends.com/IEE/1004B.php

[1] Statistic from Engineering Trends http://www.engtrends.com/IEE/1004B.php

[2] Statistic from IEEE Spectrum http://spectrum.ieee.org/blog/semiconductors/devices/techtalk/engineering\_schools\_that\_tie\_t

[3] Zastavker, Y., Ong, M., & Page, L. (2006). Women in engineering: Exploring the effects of project-based learning in a first-year undergraduate engineering program. 36th ASEE/IEEE Frontiers in Education Conference, San Diego, Ca.

## **Problem Statement**

Educational Foundations (ASEE, NSF, PLTW, ASME, IEEE, NAE, NAS, ABET, NCSSSMST ) have been pushing for changes in engineering education for years.[1][2]

 One of the ideas proposed to is to incorporate project based learning (PjBL)<sub>[3][4][5]</sub>



[1] WA Wulf "The urgency of engineering education reform" the New Paradigm for Engineering Education, 1998

[2] Lr Lattuca, Pt Terenzini, Jf Volkwein Engineering Change A Study Of The Impact Of Ec2000, Baltimore, Md: Abet Inc, 2006

[3] LP Maletsky, RD Hale "The Practical Integration of Rapid Prototyping Technology into Engineering Curricula

[4] J. S. Lamancusa, J. E. Jorgensen, and J. L. ZayasCastro, The learning factory - a new approach to integrating design and manufacturing into the engineering curriculum, J Eng Educ 86(2) (1997), 103-112

[5] Wingspread Group on Higher Education, An american imperative: higher expectations for high education, Racine, 1993

## Solution: PjBL

#### Provides Perspective on lecture

- Ownership of project engages students
- Better prepares students for careers
- Allows students to share handson learning experiences





Chart Source: http://www.profoundlearning.com/Content/EducationSolutions/projectBasedLearning.jpg

## **Business Concept**



Work with Engineering & Science Educational foundations/organizations, as well as schools to promote Project-Based Learning

# CNC Manufacturing Process



### **Model Generation**



**Finished Part** 



### **Toolpath Generation**



**Machining Process** 

## Low Cost Desktop CNC



Cheaper: \$800 compared to ~\$3000

Lower precision and accuracy: .005" instead of .0005"

http://www.harborfreight.com/cpi/ctaf/displayitem.taf?Itemnumber=66052
 http://www.probotix.com/FireBall\_v90\_cnc\_router\_kit

### Curriculum

- We will offer curriculum supplements and guides with our products
  - Lab guides, testing procedures, handouts, administration suggestions
  - This will assist educators in implementing the software and CNC mills
- Why?
  - Engineering professors are incentivized to research not to teach.



### Market Study



**Educational Institutions: High Inertia** 



Hobbyists: Small market, Low Budget



Students: Low Budget, Space Concerns

ED EO

Design firms: High Budget, Low time

# Customer Value Proposition

### **Carnegie Mellon**

### Olin College



### <u>Value</u>

Provide schools with marketing asset
Adding value to education
Improving the manufacturing industry form the ground up

#### **Benefits**

Improve student enrollment/retention rate for schools
Provides marketable skills to engineering students

#### <u>Attributes</u>

•Easy user interface, students can easily get their models made •Provide curriculum suggestions to faculty •Offer product support and maintenance



STANFORD ENGINEERING

### Number of Engineering Undergrads and High School Students



National Science Foundation - Figure 2-34 [http://www.nsf.gov/statistics/seind08/c2/c2s5.htm]

### Engineering Student Degree Breakdown

15%

5%

2%

6%

14%

### 38% Could use our services

http://www.engr.utexas.edu/about/factsheet/
 http://engineering.illinois.edu/about-us/facts-figures
 http://coe.berkeley.edu/about/college-facts.html

| Aerospace               | Agricultural and Biological Engineering Bioengineering |                               | Chemical and Biomolecular Engineering |
|-------------------------|--------------------------------------------------------|-------------------------------|---------------------------------------|
| Civil and Environmental | Computer Science                                       | ECE                           | Industrial and Enterprise Systems     |
| MatSci                  | Mechanical Science and Engineering                     | Nuclear, Plasma, Radiological | Physics                               |

# Course Machine Requirement

#### Case of Boston University



### Range of 5-20 students per machine

depending on school analyzed

# Available Market for Machines



Available market = 327000 × \$800 = \$261 million

## Market Share Growth

Aiming for 20% market share in 5 years, assuming 5year product life cycle.

| Year                      | Annual Sales | Revenue (million) |
|---------------------------|--------------|-------------------|
| 1                         | 8,788        | \$7.0             |
| 2                         | 10,546       | \$8.4             |
| 3                         | 12,655       | \$10.1            |
| 4                         | 15,186       | \$12.1            |
| 5                         | 18,223       | \$14.6            |
| Total 20% Market<br>Share | 65,398       | \$52.3            |

## Competition



### **About the Industry**

The desktop CNC belongs to the low volume manufacturing industry

\$2 billion annual revenue

20% annual growth rate







### Desktop CNC Milling Additive Printing

Statistics from: David R. Butcher "Rapid Prototyping Shows Few Signs of Slowing" <http://news.thomasnet.com/IMT/archives/2006/09/rapid\_prototyping\_shows\_few\_sign s\_of\_slowing\_materials\_properties\_growing\_fast.html>

#### Stereolithography

Laser Sintering

## Porter's 5 Forces

|                               | Favorable | Moderate | Unfavorable |
|-------------------------------|-----------|----------|-------------|
| Threat of new entrants        |           | Х        |             |
| Bargaining power of buyers    |           |          | Х           |
| Threat of substitutes         |           |          | Х           |
| Bargaining power of suppliers |           | Х        |             |
| Intensity of rivalry          |           |          | Х           |



NONE of Porter's 5 forces are considered favorable, indicating the sustainability of this venture is limited.

## **Critical Risk Factors**

- Slow adoption of idea that engineering reform is needed.
- Schools not having enough funds available to invest in new programming
- User misuse/abuse would affect products' reputation & require high support

### **Critical Success Factors**

 Partnering with a PjBL Organization such as Project Lead The Way

- . Establishing an early partnership with one or more universities, educational foundations, engineering firms, and large institutional donors.
- Offering curriculum guidance that encourages use of the products
- . Getting a suitable manufacturing partner to make the CNC machine at a competitive cost
- . Low cost encouraging high product redundancy

## **Potentials for Growth**

### Adding additional products

Different types of machines and accompanying software (Routers, Lathes, Presses, RP Machines)

### Complete K-12/HS/University curriculum development

Building low-price high-quality CNC machines for sale to the general market (Dental, Hobby, Personal, Designers...)

### **Our Decision**

Can we do it – YES Is it worth doing – YES Should we do it – NO

