ENGR3390: ACTUATION AND CONTROL

Encoder

Brush cover

Brush

Ironless winding
Housing (magnetic return)

Shaft
Motor flange
Ball bearing
Motar pinion

-Gear mounting plate
Planet carrier plate

Planets
Internal gear

Ball bearing

Gearhead flange

Output shaft

TEAM BRAVO

J. GORASIA -11/1/09

TABLE OF CONTENTS

TADIE Of FIGUIES ...ttt ettt e ettt e e e bttt e e e ab bt e e e ab b e e e e abbe e e eabbe e e e abbeeeenbaeeeaanbaeeeanbbeeesantaas 2
EXECULIVE SUMIMIAIY oo, 4
SUMMANY OF REATINEGSceeenitiiee ettt ettt ettt e e ettt e e e b bt e e ettt e e e aba e e e e sbae e e abbeeeeabaeeesbbaeaeanneeeans 5
SOTEWAIE SYSEEMS OVEIVIEW ...eiiuiiiiiiiiiieeeeiitee ettt e e et e e ettt e e e aabt e e e e bbeee e e b bt e e e abte e e e abbeeaaanbaee e abbeeeenbaeesasbaeasanseeeann 5
IMIIN COTE ...ttt ettt ettt ettt e ettt e e e bttt e e e abb e e e e abe e e e e ab b e e e e abe e e e e abee e e e nbbee e e nbbeeeaasbaeeeaabbeeeeanbbeeeeanbaeeaaan 5
RC SEIVO MOTOK ettt s 7
SEEPPEI MO0 .ot 8
DC Servo Motor 1 (Digital CONTIOI)uuiiiieeiiiiiiiiiiee e s ettt e e e e ettt e e e e e e e sbra e e e e e e essaabbeaeeaaeeessssssneeeeesesannnnes 10
DC Servo Motor 2 (ANAIOZ CONTIOI)uuiiiieeiiiiiiiiieeee ettt e e e ettt e e e e e e e s trar e e e e e esssabbbaeeaeeeessssstaaeeeesessnnnses 13
SUPPOItING Vis FOr DC SEIVOMOTONSvtiiiiititieieiiteee ettt e e ettt e e ettt e e ettt e e sabteeeaabteee s abteeeaabaeeeeaeteeaaabeeeeeanbaeeeeneaes 14
L= =TT 15
CONCIUSIONS ..ttt ettt ettt ettt e e ettt e ettt e e e abt e e e e ate e e e abe e e e e abaee e e sbae e e abe e e e e abeeeeeanbbeeeaasbeeeeanbbeeeenbaeesannbaeans 16
REVISEA LA WITEEUP . ..ttt ettt ettt ettt ettt ettt e ettt e e ettt e e e st b e e e e bbb e e e aabbeeeaambbeeeeaatbeeeenbaeeeabbaeasanneeeens 17
FiY oo T=T oo) O O T T TP PP PP PPTTPPPPTO 17

TABLE OF FIGURES

Figure 1: Main motor block diagram. This is a huge VI which is divided into bands for separate motors................... 6

Figure 2: The block diagram for the RC servo motor. This packages the string to be sent via serial to the SSC 32
motor controller. Inputs from the front panel are scaled from degrees to the appropriate values for the motor
(oo a1 o] | [=T o o U PRSPPI 7

Figure 3: Front panel for the RC servo motor. The initialize serial port command initializes the serial port, while the

position and speed are coNtrolled iN AEGIEES.c..uuiii ittt et e et e e et e e e s et e e s ebeeeeeaaes 8
Figure 4: Front panel to control the StEPPEr MOTONcouiiiiiiiiie ettt et e e e 9
Figure 5: Chip for controlling the StePPEr MOTOF.iii ittt e e e e e e aeaee s 10

Figure 6: FFONt PAn@l fOr DCSL ... cooiiiiiiiiiiiee ettt ettt ettt ettt ettt e e et e e e eabt e e e e e bt e e e e abbeeeeatbeeeeanbaeeeaabbeeesannbeaens 10

Figure 7: DCS1 Enable and disable chip. DCS1 is controlled by a NI 9505 motion control module, which needs to be
enabled before being used. Using the motion control module gives a few indicators to troubleshoot motor
performance like drive faults, or over temperature faults.uuiiiiiiiiiiiiiee e 11

Figure 8: DCS1 Control chip. This chip generates the PWM signal that drives DCS1, and controls the motor
o [T g=To1 (o] s TR OO RO O T SO P PP U PP TUPUPPRPPP 12

Figure 9: The encoder reading chip uses XOR gates and shift registers to convert the quadrature encoder signals
into a motor direction and rotation count. The chip also keeps absolute position of the encoders, taking that
responsibility off the PowerPC. In addition, the chip gives a time between encoder counts, which is useful to
determine the VEloCity Of the MOTOF.iiieiiiiiiiee e et e e e e e st e e e e e e e s s naaraaeeeaeenas 12

Figure 10: The shift registers are used to create a delay to the encoder signals. If the XOR of Encoder A or B and its
shift register is true, the count increments. Finally, if the XOR of Encoder A and the shift register B is true, we know
the motor is rotating ClOCKWISE @aNd VICE VEISA.uuiiiiiiiiiiiiiieee ettt eee e eeere e e e e s e e e e e e staraeeeeeesssnsaaaeeeas 13

Figure 11: Front Panel fOr DC SEIVO 2.....uuuiiiiiiieeieiiiitttee e e eeeitttee e e e e eetaateeeeeeessaabaaeeeaessessssstaseeeesesssnssssaneaeessnns 13

Figure 12: Enable and speed control chip for DCS2. It is a simple chip that keeps the output voltage between 0 and
D VOIES. ettt ettt et e bt e e e a bt e e e e bttt e e ab et e e e at e e e e e bttt e e aabbeeeeaatbeeeebbeeeeaabbeeeeaabaeeeaabaeans 14

Figure 13: Ticks to degrees sub-VI. This takes the number of ticks moved coming from the encoder and scales it to
Lo =T = 4 =TSP PPRR PP 14

Figure 14: Position to velocity converter based on the change in position of the motor and the ticks per count
VLU .ttt ettt ettt e ettt e et e e e e e h bt e e e e bt e e e e e bt e e e e hbae e e e hbeeeeaabee e e e aabteeeenbaeeeabteeeeaaraes 15

Figure 15: Velocity of DCS1 as a function of the PWM duty. This chart compares the measured angular velocity in
degrees per second to the inputted PWM duty cycle expressed in our internal control units consisting of vales
between -1800 and 1800. The response is very linear, with a correlation coefficient of over 99%. However, there
is a small dead zone around 0. Though we did not try to quantify the extent, it is slightly visible in this graph. 16

EXECUTIVE SUMMARY

We developed a control system for four different motors in this lab, a digital DC motor, a stepper motor, an analog
DC motor and a RC servo motor. Since we used a single board RIO as our controller, we had access to two real time
operating systems, on the PowerPC and a FPGA. This gave us the ability to have accurate high speed control of the
motors, and make precise closed loop control schemes. While the motors needed to be interfaced to in different
ways, they can be abstracted out to be identical. Doing so makes it trivial to control all motors, and make them do
things like sway in unison, or play music.

SUMMARY OF READINGS

Actuation and control is very important to mobile robotics. If robots are going to have any actuators, these need to
be controlled. In this lab, we are granted specialized hardware to better accomplish this, the Single Board RIO.

The single board RIO consists of a PowerPC chip, a FPGA and many interchangeable modules. The advantage of
using the Single Board RIO is that it is a real time operating system. That means that we can better predict and
control the execution of operations on the computer. This is important in a physical system, as we want to control
the physical systems precisely in time.

While both the PowerPC and the FPGA operate in real time, the FPGA operates much faster than the PowerPC at
certain operations. The FPGA is software reconfigurable hardware which means we can shape hardware with
software into highly optimized structures for certain operations. While this means that the FPGA is limited in the
operations it can perform (it can’t do floating point math) it is very good at what it does. Therefore, by using the
PowerPC and FPGA together, it is possible to design a very computationally efficient method for controlling
motors.

SOFTWARE SYSTEMS OVERVIEW

The code can be broadly divided in two: code running on the FPGA, and code running on the PowerPC. Vis running
on the FPGA will be referred to as chips, while Vis running on the PowerPC will be referred to as sub-Vis.

MAIN CODE

The main code is a combination of all the code for the four different motors. It was developed by independent
teams then pieced together to make the main code. Therefore, the main code can be easily grouped in bands.

ﬂ...--..__._.

RC Servo Motor

Figure 1: Main motor block diagram. This is a huge VI which is divided into bands for separate motors.

The main VI gives the possibility of controlling the all four motors together or individually. In addition, a sway
command was implemented to make the motors oscillate with a configurable period, amplitude and offset.

How the individual motors are controlled is described in the next few sections.

RC SERVO MOTOR

The RC servo motor is controlled through a Lynxmotion SSC-32 servo controller. The controller takes in a serial
command input which it interprets to control up to 32 servo motors simultaneously.

Euild Text2
pDevice (rapidash)
P Position (69)
Speed (harder hal

Euild Text

pDevice (Magic Wa
P Position (Cowgirl)
¢ Speed {of Lave)

Figure 2: The block diagram for the RC servo motor. This packages the string to be sent via serial to the SSC 32 motor controller. Inputs from
the front panel are scaled from degrees to the appropriate values for the motor controller to use.

The command string for the controller follows the following format:
<ch> P <pw> S <spd> ... # <ch> P <pw> S <spd> T <time> <cr>
Example: "#0 P1600 S750 <cr>"

From the user manual:
e ‘"<ch> Channel number in decimal, 0-31

e <pw> Pulse width in microseconds, 500-2500

e <spd> Movement speed in uS per second for one channel (Optional)

e <time> Time in mS for the wntire move, affects all channels, 65535 max (Optional)
e <cr> Carriage return character, ASCII 13 (Required to initiate action)

e <esc> Cancel the current action, ASCII 27"

For us, the channel number used was 0 since there was only one servo motor. The pulse <pw> was a value from
615 to 2350. By scaling the pulse width to the corresponding position of the motor in degrees, we found that 0
degrees corresponds to a pulse width of 615 and 180 degrees to a pulse width of 2350. The rest of the positions
varied linearly within this range. The speed <spd> was determined in the same fashion, giving a speed of 180
degrees per second with a value of 1735.

A note from the user manual® was that the first positioning command should be "# <ch> P <pw>". This allows the
controller to learn where the servo is positioned on power up. If this step is ignored, speed and time commands
will be ignored by the controller. Thus we created a button to send this default string.

Individual Motor Tuning, Control, and Monitoring
DEMotor i | Stepper | DCMotorz RC Serve |

Command String
WISA resource name

KRSRLIGINETR | Roxiion R
¢ - = iflsn00

stop bits (10: 1 bit) Speed status code
She 1000 ¥ —

uuuuuu

Figure 3: Front panel for the RC servo motor. The initialize serial port command initializes the serial port, while the position and speed are
controlled in degrees.

STEPPER MOTOR

The stepper is unique in this set of motors as it does not have position feedback. Therefore, it must keep track of
its position by keeping count of the number of steps it has moved and make sure it does not skip steps.

! http://www.lynxmotion.com/images/html/build136.htm#comform

! Pasition Cantrol -’;.-. o

¢

¢

Figure 4: Front panel to control the Stepper motor

The FPGA code is shown in Figure 5. The FPGA compare the stepper’s current position with the intended position
and then steps in the appropriate direction that would close that difference. Since there is no encoder, the FPGA
keeps track of the number of steps that it has commanded in a tally which is later used to determine the position
of the motor. In addition, the motor also gets the time between steps, allowing it to do velocity control.

Complication in the code arises because a few gotchas that needs to be accounted for. Firstly, the FPGA should
only update its tally of number of steps when it actually sends a step command. Next, there is a feature to zero the
stepper tally, to allow the position of the motor to be set. Finally, direction control is achieved by simple position
control, comparing the desired position to the current position. There is also a control mode input, which gives
either velocity control or position control. Velocity control is achieved by comparing the position to a known
position and determining how past the stepper should have moved in the timestep.

FP&A Step | Commandsd Position (steps)

Half-Step Time iticks)

Reset Position fo 0
Enabile

Control Mode

ul]

e Enable

fpgasotemplate

]

Figure 5: Chip for controlling the stepper motor.

DC SERVO MOTOR 1 (DIG

ITAL CONTROL)

DC Servo motor 1 (DCS1) is controlled through a NI 9505 motion control module. The module gives full H-bridge
control of the DC motor. It also takes in the encoder inputs, allowing us to implement closed loop control of the

motor.

To control the motor, we pipe a PWM signal to the motion control module, and this is translated to an analog

voltage to command the motor.

Individual Mator Tuning, Control, and Monitoring

DC Mator 1 | Steppar | DCMakor2 | R Sarva

Enable Drive Disable Drive DES1 Motor Postion

ELUE
Q @ 300
5 250

Drive Status IDisabIed £
\E' 200 -|

2 150

DCS1 Reset Position DCS1 Reset Value

> ’ 2 100
O Fj“ 50|

-l
[

!
DCS1 Control Yelocity ~ DC51 Desired

rloto MY

Velocity 10 200

R posns 100 gy 250
osition 3 ’*
{- 300 e DES1 Woltage in
g0
/ - 1600
1 359
DCS1 Encoder Position
DCS1 PID gains
|315
tonal gai DCS1 Time delay
proportional gain (Kc) . DCS1 Counts {no reset)
74 B “Jo.001
£ v

_integral time (Ti, min) DCS1 Index (Z) Position
_/rﬂu |114ssz
derivative time (Td, min;

/
FD

Figure 6: Front Panel for DCS1

The control on the FPGA for DCS1 consists of 4 chips:

e Signal Enable / Disable
e PWM pulse generator
e Encoder reading

Since DCS1 is controlled by a motion control module, it needs to be enabled before it can be used, as shown in
Figure 7.

Drive Status
D251 Enable/Disable Cluster o True =
[i) B
HE DCS1 Disable Drive |+ u Mod? i) wap Mod?
DCS1 Enable Drive |- Enable Drive Cizable Drive
|
CrCS1 Status Cluster OUT
4 Disabled |
- Maod?
YWsup Present M. i F]
Drviwe Shatus [-
Drivva Fault M-
et Ternperabure Faulk
L] Drive Status DCS1 Status Cluster OUT
Wsup Present []
; Crrive Fault E
Cwar Ternperature Fault
- |

Figure 7: DCS1 Enable and disable chip. DCS1 is controlled by a NI 9505 motion control module, which needs to be enabled before being
used. Using the motion control module gives a few indicators to troubleshoot motor performance like drive faults, or over temperature
faults.

Next, a PWM signal needs to be generated to control the speed of the motor. Looking at the datasheet of the
motion control module, it can take a 20kHz PWM signal, and modulate the speed of the motor based on the duty
of the signal. To make the control easier, the PWM signal input, DCS1 speed, is allowed to range from -2000 to
2000. This allows us to also insert the direction for the motor to travel to into the DCS1 input, as that is a separate
control to the motion control module. The PWM signal works by incrementing two counters. One keeps track of
the signal length while another keeps track of duty length. By incrementing the two counters appropriately, it is
easy to create a PWM signal.

¥

v
i@y - = [EG} @ [M]Error
o | [Old Speed value =
= 2! G
IF True, Read
3 mew speed
value elze use
old
L e]
=4 Fead Speed| :
[+ Counterclockwize 7|
D51 Drive Control Cluster
_______ B N—
251 Speed
=l

Figure 8: DCS1 Control chip. This chip generates the PWM signal that drives DCS1, and controls the motor direction.

Finally, the encoder position is determined using clever use of XOR logic gates and shift registers. The encoders

consist of 3 separate rings: two of which are for relative positions, while the third is for absolute positioning. We

can think of the encoders producing square wave signals. The number of counts of the square wave can be used to
determine the relative position of the motor. On the other hand, the phase offset of Encoder A and Encoder B can
be used to determine if the motor is spinning clockwise or counter clockwise.

G T

Fead the encoder phase walues
|

™ True ¥ t[

51 Index (2) Position

B I Mod? /Encader Phase Bh.

B [l Mod? Encoder Phase Ahf‘

BAN rtod?Encoder Index B

non-reset counts

DCS1 Reset Pasition Walue

Encoder Position

[True Vt

' 1=
L2351 Counts (o reset)

: fa]
D51 Encoder Position

Tick Count at Last Encoder count
E— , =]
Time between Encoder Counts LS4 Ticks/Count
|

Figure 9: The encoder reading chip uses XOR gates and shift registers to convert the quadrature encoder signals into a motor direction and

rotation count. The chip also keeps absolute position of the encoders, taking that responsibility off the PowerPC. In addition, the chip gives a

time between encoder counts, which is useful to determine the velocity of the motor.

The diagram in Figure 10 helps explain how the chip in Figure 9 works.

Clockwise

Encoder A

Encoder B

Shift register A

Shift register B

Encoder A XOR Shift Register A
Encoder B XOR Shift Register B
Encoder A XOR Shift Register B

Counter clockwise

Encoder A

Encoder B

Shift register A

Shift register B

Encoder & XOR Shift Register &
Encoder B XOR Shift Register B
Encoder A XOR Shift Register B

Figure 10: The shift registers are used to create a delay to the encoder signals. If the XOR of Encoder A or B and its shift register is true, the
count increments. Finally, if the XOR of Encoder A and the shift register B is true, we know the motor is rotating clockwise and vice versa.

DC SERVO MOTOR 2 (ANALOG CONTROL)

DC Servo Motor 2 (DCS2) is very similar to DC Servo Motor 1. The main difference is that DC servo 2 is controlled
by an analog voltage which is passed through a Sabertooth motor controller to control the motor. The encoder
position is fed back to the PowerPC via digital |0s.

Individual Mator Tuning, Control, and Monitaring

DC Matar 1 ‘ Stepper DC Motar 2 | RC Serva

Erf B PR DCS2 Motor Position Fioto RN

360,
-

= 300

‘g 250
= zm-
c

2 150

DCS2 Reset Position DC52 Reset Yalue & 100-]
» o 50|

ﬂ—‘
0
DCS2 Desired Tine

150 z00
|
w0, " A0

b A DCS2 Voltage in
. 50
‘k Position N . v e
b, 4 DCS2 Position

1 359

DCS2 Control Velocity
velocity

508
DCS2 PID gains

proportional gain (Kc)

. _DCSZ Time delay
o0 Lj 0001

integral time (Ti, min)

ol

_derivative time (Td, min)
e

Figure 11: Front panel for DC Servo 2.

Since the wiring of DCS2 is simple, only a single chip is required to enable the motor and to control its speed. The
motor will not move if sent a signal of 2.5V, while a signal above that will make it rotate clockwise, and a signal
below that will make it rotate counter clockwise. This chip is shown in Figure 12.

DiC Servo 2 Contral

252 Drive Contral Cluster

=g | Z52 Speed
L " | DSz Ge

Figure 12: Enable and speed control chip for DCS2. It is a simple chip that keeps the output voltage between 0 and 5 volts.

The encoder used for DCS2 was identical to DCS1, therefore the chip in Figure 9 was reused.

SUPPORTING VIS FOR DC SERVOMOTORS

On the PowerPC, we receive position in ticks from the DC motors, and we send either PWM duty signals or an
analog voltage value to control the velocity of the motors.

D252 Encoder Position

Cregrees

F.
rzasg

Figure 13: Ticks to degrees sub-VI. This takes the number of ticks moved coming from the encoder and scales it to degrees.

To convert the tick values coming from the encoders to rotation values in degrees of the motors, we employ a
modulus operator and linear scaling. Since the encoder is a quadrature encoder with 500 counts per revolution,
and is connected to a 65.5:1 gear reduction, there will be 131000 counts per revolution of the output shaft. Taking
the remainder of the cumulative number of ticks divided by 131000 will constrain the number of ticks between 0
and 131000, a position in ticks. Finally, scaling this number will give the position of the output shaft in degrees.

Sampled Pos in (degrees
~ p (degrees) Sampled Pos out (degrees)

fizs)

SrE:

8 [F]
ipe

Current Paos (degreas)

Ticks Accum Cut

Welocity Ot (intermal)

Ot (degrees)

Figure 14: Position to velocity converter based on the change in position of the motor and the ticks per count value.

Next, we have a sub-VI which uses the change in position of the motor and the sample tick rate to give the velocity
of the motor. Interestingly, it does not use an accumulator for the tick rate to give time. Instead, it simply reads
the ticks per count value from the encoder, then resets the shift register that could be used to keep track of it. The
false case for this VI simply passes values through.

TESTING

To create a control system, we needed to determine if the motor’s responded linearly to their input signals.
Therefore, we tested DCS1 by sending it PWM signals of different duties, and determining the velocities of the
motor. Using a stopwatch and eyeballing the rotation of the motors for several revolutions, we managed to get the
graph in Figure 15. From the graph we can tell that the motor responds linearly to changes in duty, which makes
controlling it easier.

DC Servo 1: Angular Velocity vs. Input

2000 y=585614E+00x + 2.10059E+00

R? = 9.99233E-01
00 o~

-400 -300 -200) 100 200 300 400
/ 2000
PWM Val

Figure 15: Velocity of DCS1 as a function of the PWM duty. This chart compares the measured angular velocity in degrees per second to the
inputted PWM duty cycle expressed in our internal control units consisting of vales between -1800 and 1800. The response is very linear,
with a correlation coefficient of over 99%. However, there is a small dead zone around 0. Though we did not try to quantify the extent, it is
slightly visible in this graph.

The other motors were tested in similar ways, by eyeballing the speeds and making sure they matched up. For
DCS1 and the stepper motor, we used the physical dials to make sure that the motor was moving to the positions
we thought it was supposed to.

Through testing we learned that we could make the stepper motor run at about 700 RPM. This made it possible for
us to produce audible notes, which we then utilized to produce music.

CONCLUSIONS

Using the FPGA allowed us to have real time control over the motors which is important when dealing with a
physical system like motors. We were lucky that all motors had very linear responses, making it trivial to develop a
control schematic for them.

Based on our experiences in this lab, the steps to control a motor can be summarized as:

e Interface with the motor

e Make the motor move

e Determine the motor position

e Test the response of the motor to different inputs.
e Develop a control scheme.

This plan worked well for this lab, and will be the method | use for future robotics projects.

REVISED LAB WRITEUP

The lab handout is confusing, which is a function of having strange Vis in it that seems disparate. More work needs
to be done to make the Vis flow better.

In addition, the wiring schematic for DCS2 was completely wrong. The correct wiring is:

e Encoder Phase A: Module 1-DIO4
e Encoder Phase B: Module 1-DIO5
e Encoder Index: Module 1-DIO6

e AOO: Module 5-A00

APPENDIX

Code is attached at the end of this document.

PowerPC.vi

Initialize
Hardware

L

Individual Motor Tuning, Control, and Monitoring

Hardware Set Up

VISA resource name

[

stop bits (10: 1 bit)

Initialize Serial P

Build Text
[o]-p Device (Magic

anc

[0} Position (Cowgirl)

e [o}» Speed (of Lo
b CR
Result 0

Motor Contl

4

ol Mode

(rapida
Position (69)

Speed (harder hard:

Command String

FJ

FEGE. i
FPGE, Target
(el

DCS1 Sampled n

,

Commanded Value

&)

stepper default velocity (deg/s) |[DEL W

Control |Mode

"Position Control", Default —P

w2 B

max accel (deg/s/s)

ms per frame

Enable

Bundle By Name

DCS1 Enable Drive |]
DCS1 Disable Drive

Disable Drive DCS1 Reset Value

e

Enable Drive DCS2

DCS1 Reset Position

&
Haarthe;

b DCE1 Enable/Disa

DC51 Reset P

DC51 Reset Posit
DCS1 Drive Conh

DiC51 Encoder

D251 Status Clu

DCE Count (7

DCE1 Index (2)
DCS1 Ticks/e

DCS2 Ticks/t

252 Encoder

D52 Counts (r

DCS2 Index (2)

DC52 Reset Posit

DCS2 Go

DCS2 Reset Value

I
DCS2 Reset Position

=

DCS2 Reset P

D52 Drive Contl

—

DCS1 ticks E

DCS1 velocity][0}/

[FoE]

\féL |

st time] o}

DCS2 Sampled position @

DCS2 ticks E

DCS2 velocity][0

bes2 time] [0}

&

per Cortrol Bundle
. Stepper Cutput

]
"

W

nanded Position (steps)
alf-Step Time (ticks)

Reset Po: to 0

Enable

FPGA Stepper Output

Control Mode

Nl

ble Cluster

sition

ian Yalue
| Cluster

Position ———

Heartbeat

ster OUT

Drive Status

Vsup Present

Drive Fault

Drive Status

Over Temp Fault

DCS1 Counts (no reset)

0 reset]

Position]
ion Yalue
Ssition

| Cluster

DCS1 Index () Position

DCS2 Position

DCS2 Motor Position

oder Position

DCS1 Motor Postion

DCS1 Voltage in

123

T

Th,

DCs1 Desired|

DCS1 Control Velocity

M

v Data Entry Li

DCS1 Time delay

DCS2 Voltage in

DCS2 Control Velocity

¥l

errorjout 2

Stepper Error Output

OO OO OO OO OO T O O T O T T O O O O O O O O O O O O O O O O S O O O O T O O O O O C O ET T

0000000000000 0000000000000000000000000000000000007107

5 Main Loop
1.3 LEC
+ 4+

> I.ALEC

Build Text2
) Device (rapidash)

—» Position (69)
— Speed (harder harc| |
E = M Y - |

Result

L] [l
L o d n
Eh FPaA Stepper Control Bundle

[l

-

-

000000000000

FPa8, i
FPas, Target
.12

Lolimanaced vdiuc

DEL)

"Position Control", Default

stepper default velocity (deg/s) ”@W
3200

Control

ms per frame

This either enables
. or disables the
Enable Drive DCS1 motor

DCS1 Reset Positi

Bundle By Name
DCS1 Enable Drive
DCS1 Disable Drive

Disable Drive DCS1 Reset Value

%y

Enable Drive DCS2
ae= i

DCS2 Go
DCS2 Speed

nd DCS2 Reset Value
DCS2 Res

E I FEAE LEPIET LR L3

FPGA Stepper Output

| e Y |
Commanded Position (steps) T L
Half-Step Time (ticks)
1132 Reset Position to 0 Current Position (steps)
Enable r Error (steps)
Control Mode
Zero RPM
L degrees
1231
Enable : Ley
»»»»»»»» E
deg / sec
4 FOEL
A ;
Heartbeat k
on ¥ 0C51 EnableDisable Cluster Heartbeat
b DCS1Reset Pagition Drive Status
¥ ¥ [C51 Reset Position Walue - Vsup Present
| p DCS1 Drive Conbrol Cluster Drive Fault
DCS1 Go EW 251 Encoder Pasition b Over Temperature Fault
DCS1 Speed | DCS1 Status Cluster OUT b
D51 Counts (o reset] b
D251 Index (2] Position »
0251 Ticks Count H—
D252 Ticks/Count b
252 Encoder Position I '”T—'*'
D52 Counts (no reset] [EG EEE
0252 Index (2 Position »
b [nZS2 Reset Pasition Walue
[CiZ52 Reset Position
ot Position =k 252 Drive Conbrol Cluster
I TIces
H
[EG REE
—_—

Drive Status

DCS2 Position

DCS1 Counts (no reset)

DCS1 Index (Z) Position
I|

DCS2 Motor Position

=

|

o S
DEL

DCS1 Encoder Position

DCS1 Motor Postion

= =

Stepper Error Output

0
\DCSI Sampled position \

ocst]]

DCS1 velocity ||0

ocst tme] [o]

DCS2 Sampled position | | o

DCS2 ticks | o]

DCS2 velocity ||0

0

N~ ! FoS
1 +
7 wEL
[3]
B [46.14]
B~
B
¢
d FoS
i
7 wEL
e
[4]
w
U 45.139
B~

DCS1 Control Velocity DC

F [
1 b
|

D

L

i

DCS1 Voltage in

DCS1 Desired

| 71 —
H' Data Entry Limits

CS1 Time delay
DEL Wk

DCS2 Desired

DCS2 Voltage in

DCS2 Control Velocity

Stop

FPGA.vi

FPGA Stepper Control Bundle

o Commande

=l o Half-Step 1
]

I) Reset Posit

-
-

:.i Position Control Cor
]

Heartbeat

DCS1 Enable/Disable Cluster

DCS1 Drive Control Cluster

DCS2 Reset Position

FPGA Stepper Output

Generated
Ctrl Signals

' Enable
' Direction
' Step

DCS1 Status Cluster OUT

DCS2 Reset Position Value

DCS2 Drive Control Cluster

DCS1 Reset Position

J

DCS1 Reset Position Value
e
T 0

4

DCS1 Index (Z) Position
0

DCS1 Counts (no reset)
0

DCS1 Encoder Position

0

DCS1 Ticks/Count
0

DCS2 Index (Z) Position
0

DCS2 Counts (no reset)
0

DCS2 Encoder Position

0

DCS2 Ticks/Count
0

[Velodity Control
Commanded

HolF-Step Time (ticks)
Reset Positon to 0
Enable
Cantral ode

FPGA Stepper Output

Current Positon (steps) [[]
[Eoces [T

Wit #ticks

Drive Status
DCs1 EnablefDissle Cluster S e =B ==
=

2
£

Heartbeat

= Mad?
Vg Present !
T Drive Status . e)
Drive Faul >
Guar Temparaturs Faull 3 5CS1 sttes Clster 00T I TS DCS1 Index (2) Position
v St i tatus Cluster
Drive Status i =
o] V;“V P':SE?‘ {1 Mad7 /Encader Phae A |
f rive Faul e g
1 [Over Temperature Faurt] | |11 LY |
5 B Tndex :
- 1

—
[DC Servo 1 Contral
[non-reset counts

[} DCS1 Reset Position Value T)2 &
o 5 5 st cons o s
-

DCs1 Encoder Position

Botr— 1 L

DCS1 Ticks/Count

[True, Read

Value else use

[Counterclockwise]

[Fick Count at Last Encoder count

[} v
[Time between Encoder Counts

2000

e

Tre =]

DCS2 Index (2) Position

[Read the encoder phase values

Encoder? Chés »ar
Encoderz ChE »R>- ;

EncodsrZ Index)|

)
2] {1re ~}
[ron-reset counts
r—————————0CS7 Reset pogiion Valve E
DCS2 Counts (no reset)
set pos
I

o] Encoder Position

DCS2 Encoder position

DC Servo 2 Contr

[Tick Count at Last Encoder count

DCS2 Drive Control Cluster

DCS2 Speed
DCS2 Go

=1

[Time between Encoder Counts

DCS2 Ticks/Count
=]

DCS1 Enable/Disable Cluster

[oail

Drive Status

DCS1 Disable Drive

DCS1 Enable Drive

e od?

Enable Drive

DCS1 Status Cluster OUT

T

- Mod?

Weup Present

[+ Velocity Control —|—_E>__._______

FPGA Steppel Commanded Position (steps) ® T
P Half-Step Time (ticks)

. Reset Position to 0 R :[;,_
= Enable
Control Mode

D

4384

""" Enable

,,,,, " EnableDizable

ng Mod?
Dizable Drive

Heartbeat

""" Al He.

tick, |

fpgasotemplate

FPGA Stepper O

— Current Position (steps) = o

=
:D Error (steps) 1 =

[j | ﬁl 2 Step
;

vvvvvvvvv -, g
: = = Ly Step

Wait #ticks

rtbeat “

I

utput

I@

=]

DCviwe Stabus [I
Drrive Fault M
Oover Ternperabure Fault b§
b Drive Status

DCS1 Status Cluster OUT

Vsup Present

Over Temperature Fault

v
- ud
Drive Fault ? I

\DC Servo 1 Control \

If True, Read [+ Clockwise
a new speed

value else use

old

S

DCS1 Drive Control Cluster
4

—=

7 DCS1 Go

|4h Counterclockwise

DCS1 Speed

Apgr gl M

7 Drive Direction “

Number of ticks
for this cycle

= o
2000
2000 ticks=
20 kHz
[,
o '
ke

d7 Motor “

v [40 PMHz O
pi []

no
DCE

W
D

=

Read the encoder phase values \

Mod? Encoder Phase & (1),
Mod? Encoder Phase B |,
Mod? Encoder Index

n-reset counts ‘

1 Reset Position Value

T

1 Reset Position

\Encoder Position \

\Tick Count at Last Encoder count \

\Time between Encoder Counts \

\Read the encoder phase values \

Encoder2 Cha 127499 VE) ““““““““

Encoder2 ChE | 2 -
Encoderz Index - $ 3743

ount Case

non-reset counts

| |

b

< (Z) Positio

“ounts (no reset)

Encoder Position

]

:

| Ticks/Count

k

‘DC Servo 2
\Anal

DCS2 Drive Control Cluster

DCS2 Speed
DCS2 Go

Control |

og |

0
Do > DBt e ”"@

DLOoZ RESEL FOSILION vValuc

[TiEW
DCS2 Reset Position

=

\Encoder Position \

\Tick Count at Last Encoder count \

[=]

\Time between Encoder Counts \

DCS2 Counts (no reset)

DCS2 Encoder Position

DCS2 Ticks/Count

	Gorasia Actuation and Control Lab
	Table of Figures
	Executive Summary
	Summary of Readings
	Software Systems Overview
	Main Code
	RC Servo motor
	Stepper motor
	DC Servo Motor 1 (Digital Control)
	DC Servo Motor 2 (Analog Control)

	Supporting Vis for DC Servomotors
	Testing
	Conclusions
	Revised Lab Writeup
	Appendix

	Gorasia Actuation Lab Appendix
	Gorasia Bravo Appendix
	3
	2
	4

