
ENGR3390: ACTUATION AND CONTROL

TEAM BRAVO

J. GORASIA – 11/1/09

TABLE OF CONTENTS

Table of Figures .. 2

Executive Summary .. 4

Summary of Readings ... 5

Software Systems Overview ... 5

Main Code .. 5

RC Servo motor .. 7

Stepper motor .. 8

DC Servo Motor 1 (Digital Control) .. 10

DC Servo Motor 2 (Analog Control) ... 13

Supporting Vis for DC Servomotors ... 14

Testing ... 15

Conclusions .. 16

Revised Lab Writeup ... 17

Appendix .. 17

TABLE OF FIGURES

Figure 1: Main motor block diagram. This is a huge VI which is divided into bands for separate motors. 6

Figure 2: The block diagram for the RC servo motor. This packages the string to be sent via serial to the SSC 32
motor controller. Inputs from the front panel are scaled from degrees to the appropriate values for the motor
controller to use. .. 7

Figure 3: Front panel for the RC servo motor. The initialize serial port command initializes the serial port, while the
position and speed are controlled in degrees. .. 8

Figure 4: Front panel to control the Stepper motor ... 9

Figure 5: Chip for controlling the stepper motor. .. 10

Figure 6: Front Panel for DCS1 .. 10

Figure 7: DCS1 Enable and disable chip. DCS1 is controlled by a NI 9505 motion control module, which needs to be
enabled before being used. Using the motion control module gives a few indicators to troubleshoot motor
performance like drive faults, or over temperature faults. .. 11

Figure 8: DCS1 Control chip. This chip generates the PWM signal that drives DCS1, and controls the motor
direction... 12

Figure 9: The encoder reading chip uses XOR gates and shift registers to convert the quadrature encoder signals
into a motor direction and rotation count. The chip also keeps absolute position of the encoders, taking that
responsibility off the PowerPC. In addition, the chip gives a time between encoder counts, which is useful to
determine the velocity of the motor. .. 12

Figure 10: The shift registers are used to create a delay to the encoder signals. If the XOR of Encoder A or B and its
shift register is true, the count increments. Finally, if the XOR of Encoder A and the shift register B is true, we know
the motor is rotating clockwise and vice versa. ... 13

Figure 11: Front panel for DC Servo 2. ... 13

Figure 12: Enable and speed control chip for DCS2. It is a simple chip that keeps the output voltage between 0 and
5 volts. ... 14

Figure 13: Ticks to degrees sub-VI. This takes the number of ticks moved coming from the encoder and scales it to
degrees. ... 14

Figure 14: Position to velocity converter based on the change in position of the motor and the ticks per count
value. ... 15

Figure 15: Velocity of DCS1 as a function of the PWM duty. This chart compares the measured angular velocity in
degrees per second to the inputted PWM duty cycle expressed in our internal control units consisting of vales
between -1800 and 1800. The response is very linear, with a correlation coefficient of over 99%. However, there
is a small dead zone around 0. Though we did not try to quantify the extent, it is slightly visible in this graph. 16

EXECUTIVE SUMMARY

We developed a control system for four different motors in this lab, a digital DC motor, a stepper motor, an analog
DC motor and a RC servo motor. Since we used a single board RIO as our controller, we had access to two real time
operating systems, on the PowerPC and a FPGA. This gave us the ability to have accurate high speed control of the
motors, and make precise closed loop control schemes. While the motors needed to be interfaced to in different
ways, they can be abstracted out to be identical. Doing so makes it trivial to control all motors, and make them do
things like sway in unison, or play music.

SUMMARY OF READINGS

Actuation and control is very important to mobile robotics. If robots are going to have any actuators, these need to
be controlled. In this lab, we are granted specialized hardware to better accomplish this, the Single Board RIO.

The single board RIO consists of a PowerPC chip, a FPGA and many interchangeable modules. The advantage of
using the Single Board RIO is that it is a real time operating system. That means that we can better predict and
control the execution of operations on the computer. This is important in a physical system, as we want to control
the physical systems precisely in time.

While both the PowerPC and the FPGA operate in real time, the FPGA operates much faster than the PowerPC at
certain operations. The FPGA is software reconfigurable hardware which means we can shape hardware with
software into highly optimized structures for certain operations. While this means that the FPGA is limited in the
operations it can perform (it can’t do floating point math) it is very good at what it does. Therefore, by using the
PowerPC and FPGA together, it is possible to design a very computationally efficient method for controlling
motors.

SOFTWARE SYSTEMS OVERVIEW

The code can be broadly divided in two: code running on the FPGA, and code running on the PowerPC. Vis running
on the FPGA will be referred to as chips, while Vis running on the PowerPC will be referred to as sub-Vis.

MAIN CODE

The main code is a combination of all the code for the four different motors. It was developed by independent
teams then pieced together to make the main code. Therefore, the main code can be easily grouped in bands.

Figure 1: Main motor block diagram. This is a huge VI which is divided into bands for separate motors.

The main VI gives the possibility of controlling the all four motors together or individually. In addition, a sway
command was implemented to make the motors oscillate with a configurable period, amplitude and offset.

DDCC SSeerrvvoo mmoottoorrss ccoonnttrrooll

RRCC SSeerrvvoo MMoottoorr

SStteeppppeerr mmoottoorr

DDCC SSeerrvvoo mmoottoorrss

How the individual motors are controlled is described in the next few sections.

RC SERVO MOTOR

The RC servo motor is controlled through a Lynxmotion SSC-32 servo controller. The controller takes in a serial
command input which it interprets to control up to 32 servo motors simultaneously.

Figure 2: The block diagram for the RC servo motor. This packages the string to be sent via serial to the SSC 32 motor controller. Inputs from
the front panel are scaled from degrees to the appropriate values for the motor controller to use.

The command string for the controller follows the following format:

<ch> P <pw> S <spd> ... # <ch> P <pw> S <spd> T <time> <cr>

Example: "#0 P1600 S750 <cr>"

From the user manual:
• "<ch> Channel number in decimal, 0-31

• <pw> Pulse width in microseconds, 500-2500
• <spd> Movement speed in uS per second for one channel (Optional)
• <time> Time in mS for the wntire move, affects all channels, 65535 max (Optional)
• <cr> Carriage return character, ASCII 13 (Required to initiate action)
• <esc> Cancel the current action, ASCII 27"

For us, the channel number used was 0 since there was only one servo motor. The pulse <pw> was a value from
615 to 2350. By scaling the pulse width to the corresponding position of the motor in degrees, we found that 0
degrees corresponds to a pulse width of 615 and 180 degrees to a pulse width of 2350. The rest of the positions
varied linearly within this range. The speed <spd> was determined in the same fashion, giving a speed of 180
degrees per second with a value of 1735.

A note from the user manual1

 was that the first positioning command should be "# <ch> P <pw>". This allows the
controller to learn where the servo is positioned on power up. If this step is ignored, speed and time commands
will be ignored by the controller. Thus we created a button to send this default string.

Figure 3: Front panel for the RC servo motor. The initialize serial port command initializes the serial port, while the position and speed are
controlled in degrees.

STEPPER MOTOR

The stepper is unique in this set of motors as it does not have position feedback. Therefore, it must keep track of
its position by keeping count of the number of steps it has moved and make sure it does not skip steps.

1 http://www.lynxmotion.com/images/html/build136.htm#comform

Figure 4: Front panel to control the Stepper motor

The FPGA code is shown in Figure 5. The FPGA compare the stepper’s current position with the intended position
and then steps in the appropriate direction that would close that difference. Since there is no encoder, the FPGA
keeps track of the number of steps that it has commanded in a tally which is later used to determine the position
of the motor. In addition, the motor also gets the time between steps, allowing it to do velocity control.

Complication in the code arises because a few gotchas that needs to be accounted for. Firstly, the FPGA should
only update its tally of number of steps when it actually sends a step command. Next, there is a feature to zero the
stepper tally, to allow the position of the motor to be set. Finally, direction control is achieved by simple position
control, comparing the desired position to the current position. There is also a control mode input, which gives
either velocity control or position control. Velocity control is achieved by comparing the position to a known
position and determining how past the stepper should have moved in the timestep.

Figure 5: Chip for controlling the stepper motor.

DC SERVO MOTOR 1 (DIGITAL CONTROL)

DC Servo motor 1 (DCS1) is controlled through a NI 9505 motion control module. The module gives full H-bridge
control of the DC motor. It also takes in the encoder inputs, allowing us to implement closed loop control of the
motor.

To control the motor, we pipe a PWM signal to the motion control module, and this is translated to an analog
voltage to command the motor.

Figure 6: Front Panel for DCS1

The control on the FPGA for DCS1 consists of 4 chips:

• Signal Enable / Disable

• PWM pulse generator

• Encoder reading

Since DCS1 is controlled by a motion control module, it needs to be enabled before it can be used, as shown in
Figure 7.

Figure 7: DCS1 Enable and disable chip. DCS1 is controlled by a NI 9505 motion control module, which needs to be enabled before being
used. Using the motion control module gives a few indicators to troubleshoot motor performance like drive faults, or over temperature
faults.

Next, a PWM signal needs to be generated to control the speed of the motor. Looking at the datasheet of the
motion control module, it can take a 20kHz PWM signal, and modulate the speed of the motor based on the duty
of the signal. To make the control easier, the PWM signal input, DCS1 speed, is allowed to range from -2000 to
2000. This allows us to also insert the direction for the motor to travel to into the DCS1 input, as that is a separate
control to the motion control module. The PWM signal works by incrementing two counters. One keeps track of
the signal length while another keeps track of duty length. By incrementing the two counters appropriately, it is
easy to create a PWM signal.

Figure 8: DCS1 Control chip. This chip generates the PWM signal that drives DCS1, and controls the motor direction.

Finally, the encoder position is determined using clever use of XOR logic gates and shift registers. The encoders
consist of 3 separate rings: two of which are for relative positions, while the third is for absolute positioning. We
can think of the encoders producing square wave signals. The number of counts of the square wave can be used to
determine the relative position of the motor. On the other hand, the phase offset of Encoder A and Encoder B can
be used to determine if the motor is spinning clockwise or counter clockwise.

Figure 9: The encoder reading chip uses XOR gates and shift registers to convert the quadrature encoder signals into a motor direction and
rotation count. The chip also keeps absolute position of the encoders, taking that responsibility off the PowerPC. In addition, the chip gives a
time between encoder counts, which is useful to determine the velocity of the motor.

 The diagram in Figure 10 helps explain how the chip in Figure 9 works.

Figure 10: The shift registers are used to create a delay to the encoder signals. If the XOR of Encoder A or B and its shift register is true, the
count increments. Finally, if the XOR of Encoder A and the shift register B is true, we know the motor is rotating clockwise and vice versa.

DC SERVO MOTOR 2 (ANALOG CONTROL)

DC Servo Motor 2 (DCS2) is very similar to DC Servo Motor 1. The main difference is that DC servo 2 is controlled
by an analog voltage which is passed through a Sabertooth motor controller to control the motor. The encoder
position is fed back to the PowerPC via digital IOs.

Figure 11: Front panel for DC Servo 2.

Since the wiring of DCS2 is simple, only a single chip is required to enable the motor and to control its speed. The
motor will not move if sent a signal of 2.5V, while a signal above that will make it rotate clockwise, and a signal
below that will make it rotate counter clockwise. This chip is shown in Figure 12.

Figure 12: Enable and speed control chip for DCS2. It is a simple chip that keeps the output voltage between 0 and 5 volts.

The encoder used for DCS2 was identical to DCS1, therefore the chip in Figure 9 was reused.

SUPPORTING VIS FOR DC SERVOMOTORS

On the PowerPC, we receive position in ticks from the DC motors, and we send either PWM duty signals or an
analog voltage value to control the velocity of the motors.

Figure 13: Ticks to degrees sub-VI. This takes the number of ticks moved coming from the encoder and scales it to degrees.

To convert the tick values coming from the encoders to rotation values in degrees of the motors, we employ a
modulus operator and linear scaling. Since the encoder is a quadrature encoder with 500 counts per revolution,
and is connected to a 65.5:1 gear reduction, there will be 131000 counts per revolution of the output shaft. Taking
the remainder of the cumulative number of ticks divided by 131000 will constrain the number of ticks between 0
and 131000, a position in ticks. Finally, scaling this number will give the position of the output shaft in degrees.

Figure 14: Position to velocity converter based on the change in position of the motor and the ticks per count value.

Next, we have a sub-VI which uses the change in position of the motor and the sample tick rate to give the velocity
of the motor. Interestingly, it does not use an accumulator for the tick rate to give time. Instead, it simply reads
the ticks per count value from the encoder, then resets the shift register that could be used to keep track of it. The
false case for this VI simply passes values through.

TESTING

To create a control system, we needed to determine if the motor’s responded linearly to their input signals.
Therefore, we tested DCS1 by sending it PWM signals of different duties, and determining the velocities of the
motor. Using a stopwatch and eyeballing the rotation of the motors for several revolutions, we managed to get the
graph in Figure 15. From the graph we can tell that the motor responds linearly to changes in duty, which makes
controlling it easier.

Figure 15: Velocity of DCS1 as a function of the PWM duty. This chart compares the measured angular velocity in degrees per second to the
inputted PWM duty cycle expressed in our internal control units consisting of vales between -1800 and 1800. The response is very linear,
with a correlation coefficient of over 99%. However, there is a small dead zone around 0. Though we did not try to quantify the extent, it is
slightly visible in this graph.

The other motors were tested in similar ways, by eyeballing the speeds and making sure they matched up. For
DCS1 and the stepper motor, we used the physical dials to make sure that the motor was moving to the positions
we thought it was supposed to.

Through testing we learned that we could make the stepper motor run at about 700 RPM. This made it possible for
us to produce audible notes, which we then utilized to produce music.

CONCLUSIONS

Using the FPGA allowed us to have real time control over the motors which is important when dealing with a
physical system like motors. We were lucky that all motors had very linear responses, making it trivial to develop a
control schematic for them.

Based on our experiences in this lab, the steps to control a motor can be summarized as:

• Interface with the motor

• Make the motor move

• Determine the motor position

• Test the response of the motor to different inputs.
• Develop a control scheme.

This plan worked well for this lab, and will be the method I use for future robotics projects.

y = 5.85614E+00x + 2.10059E+00
R² = 9.99233E-01

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

-400 -300 -200 -100 0 100 200 300 400

PWM Val

DC Servo 1: Angular Velocity vs. Input

REVISED LAB WRITEUP

The lab handout is confusing, which is a function of having strange Vis in it that seems disparate. More work needs
to be done to make the VIs flow better.

In addition, the wiring schematic for DCS2 was completely wrong. The correct wiring is:

• Encoder Phase A: Module 1-DIO4
• Encoder Phase B: Module 1-DIO5
• Encoder Index: Module 1-DIO6
• AO0: Module 5-AO0

APPENDIX

Code is attached at the end of this document.

PowerPC.vi

Stepper DC Motor 2 RC ServoDC Motor 1

DCS1 Control Velocity

-1800

DCS1 Voltage in

360

0

50

100

150

200

250

300

Time

10230

Plot 0DCS1 Motor PostionEnable Drive Disable Drive

DisabledDrive Status

316

DCS1 Encoder Position

316464

DCS1 Counts (no reset)

114862

DCS1 Index (Z) Position

3591

50

100

150 200

250

300

90

DCS1 Desired

0

derivative time (Td, min)

0

integral time (Ti, min)

75

proportional gain (Kc)

DCS1 PID gains

0.001

DCS1 Time delay

DCS1 Reset Position

0

DCS1 Reset Value

Position

Velocity

Individual Motor Tuning, Control, and Monitoring

360

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Master

Pos'n

Initialize
Hardware

STEP 1:

STEP 2: CONTROL POSITION

E - STOP

750 period (ms)

45 half-ampl (degrees)

90 center (degrees)

Heartbeat

Motor Control Mode

Master (sway)

Individual

VISA resource name

115200

stop bits (10: 1 bit)

Initialize Serial Port

Hardware Set Up

0

0

0

0

DCS1 ticks

DCS1 time

DCS1 velocity

DCS1 Sampled position

0DCS2 time

0

0

0

DCS2 ticks

DCS2 velocity

DCS2 Sampled position

Device (Magic Wand)

Position (Cowgirl)

Speed (of Love)

CR

Result

Build Text

0

0

0

Initialization

0

Device (rapidash)

Position (69)

Speed (harder harder)

CR

Result

Build Text2

Position

2350

615 180 615

1735

180

Speed

2350
615

0

Command String

 True

Main Loop

Half-Step Time (ticks)

Commanded Position (steps)

Contro l Mode

Commanded Value

1600

360

3200

360

40000000
stepper default velocity (deg/s)

 "Position Control", Default

Enable

Zero

degs/s

10

ms per frame

max accel (deg/s/s)

1

360

1000

Enable Drive

Disable Drive

DCS1 Disable Drive

DCS1 Enable Drive

Bundle By Name

DCS1 Speed

DCS1 Go

DCS1 Reset Position

DCS1 Reset Value

DCS2 Speed

DCS2 Go

Enable Drive DCS2

0

DCS2 Reset Position

DCS2 Reset Value

This either enables
or disables the
DCS1 motor

3

4

46.14

45.139

Master
Pos'n

Motor Contro l Mode

Individual Motor Tuning, Control, and Monitoring

Stop

FPGA Stepper Output

Contro l Mode

Enable

Reset Position to 0

Half-Step Time (ticks)

Commanded Position (steps)

Error (steps)

Current Position (steps)

360

1600

degrees

deg / sec

rotations/sec

360

RPM

60

DCS1 Motor Postion

Heartbeat

Over Temperature Fault

Drive Fault

Vsup Present

Drive Status

Drive Status

DCS1 Encoder Position

DCS1 Counts (no reset)

DCS1 Index (Z) Position

DCS1 Desired

DCS1 PID gains

DCS1 Time delay

DCS1 Voltage in

 DCS2 Motor Position

DCS2 Desired

DCS2 PID gains

DCS2 Time delay

DCS2 Voltage in

DCS2 Position

Data Entry Limits

DCS1 Desired
 True

DCS1 Control Velocity

200
2.5

360

 False

DCS2 Control Velocity

Clean Up

error out 2

Stepper Error Output

Position

2350

615 180 615

1735

180

Speed

2350
615

0

Commanded Value

Master
Pos'n

Motor Control Mode

Device (rapidash)

Position (69)

Speed (harder harder)

CR

Result

Build Text2

0

Command String

 True

Main Loop

Clean Up

error out 2

0

Control Mode

Commanded Value

1600

360

3200

360

40000000
stepper default velocity (deg/s)

 "Position Control", Default

degs/s

10

ms per frame

max accel (deg/s/s)

1000

Enable Drive

Disable Drive

DCS1 Disable Drive

DCS1 Enable Drive

Bundle By Name

DCS1 Reset Position

DCS1 Reset Value

DCS2 Speed

DCS2 Go

Enable Drive DCS2

0

DCS2 Reset Position

DCS2 Reset Value

This either enables
or disables the
DCS1 motor

FPGA Stepper Output

Control Mode

Enable

Reset Position to 0

Half-Step Time (ticks)

Commanded Position (steps)

Error (steps)

Current Position (steps)

Enable

360

1600

degrees
Zero

deg / sec

1

rotations/sec

360

RPM

60

Heartbeat

Over Temperature Fault

Drive Fault

Vsup Present

Drive Status

DCS1 Speed

DCS1 Go

DCS1 Reset Position

DCS2 Reset Position

DCS1 Motor Postion

Drive Status

DCS1 Encoder Position

DCS1 Counts (no reset)

DCS1 Index (Z) Position

 DCS2 Motor Position

DCS2 Position

Stepper Error Output

0

0

0

0

DCS1 ticks

DCS1 time

DCS1 velocity

DCS1 Sampled position

0DCS2 time

0

0

0

DCS2 ticks

DCS2 velocity

DCS2 Sampled position

3

4

46.14

45.139

DCS1 PID gains

DCS1 Time delay

DCS1 Control Velocity

Stop

DCS1 Desired

DCS1 PID gains

DCS1 Time delay

DCS1 Voltage in

DCS2 Desired

DCS2 PID gains

DCS2 Time delay

DCS2 Voltage in

Data Entry Limits

DCS1 Desired
 True

200
2.5

360

 False

DCS2 Control Velocity

FPGA.vi

Direction

Step

Enable

FPGA Stepper Output

0 Commanded Position (steps)

0 Half-Step Time (ticks)

Reset Position to 0

Enable

Position Control Control Mode

FPGA Stepper Control Bundle

Generated

Ctrl Signals

DCS1 Enable/Disable Cluster

DCS1 Status Cluster OUT

DCS1 Drive Control Cluster

Heartbeat

0

DCS1 Ticks/Count

0

DCS1 Encoder Position

0

DCS1 Counts (no reset)

0

DCS1 Index (Z) Position

0

DCS1 Reset Position Value

DCS1 Reset Position

0

DCS2 Ticks/Count

0

DCS2 Encoder Position

0

DCS2 Counts (no reset)

0

DCS2 Index (Z) Position

0

DCS2 Reset Position Value

DCS2 Reset Position

DCS2 Drive Control Cluster

FPGA Stepper Control Bundle
FPGA Stepper Output

Control Mode

Enable

Reset Position to 0

Half-Step Time (ticks)

Commanded Position (steps)

Error (steps)

Current Position (steps)

fpgasotemplate

0

Enable

Step

Wait #ticks

2

 True

Direction

Ve loci ty Control

0

 True True

Drive Status

DCS1 Enable Drive

DCS1 Disable Drive

1.
2.

Over Temperature Faul t

Drive Fault

Vsup Present

Drive Status

DCS1 Status Cluster OUT

3.

DCS1 Status Cluster OUT

DCS1 Enable/Disable Cluster

DC Servo 1 Control

PWM

0

2000

DCS1 Drive Control Cluster

DCS1 Speed

DCS1 Go

Clockwise

Counterclockwise
Read Speed

Old Speed Va lue

If True, Read
a new speed
value else use
old

2000 ticks=
20 kHz

Number of t i cks
for this cycle

Heartbeat

200

Heartbeat

1

-1

 True

DCS1 Reset Position

DCS1 Reset Position Value

DCS1 Index (Z) Posi t ion

 True

DCS1 Counts (no reset)

DCS1 Encoder Posi t ion

DCS1 Ticks/CountTime between Encoder Counts

Tick Count at Last Encoder count

Encoder Posi t ion

non-reset counts

Read the encoder phase values

Count Case

0

0

1

-1

 True

DCS2 Reset Position

DCS2 Reset Position Value

DCS2 Index (Z) Posi t ion

 True

DCS2 Counts (no reset)

DCS2 Encoder Posi t ion

DCS2 Ticks/CountTime between Encoder Counts

Tick Count at Last Encoder count

Encoder Posi t ion

non-reset counts

Read the encoder phase values

Count Case

0

0

DC Servo 2 Control

Ana log

DCS2 Drive Control Cluster

DCS2 Go

DCS2 Speed

2.5 5

5

0

0

 True

Drive Status

DCS1 Enable Drive

DCS1 Disable Drive

1.
2.

DCS1 Status Cluster OUT

DCS1 Enable/Disable Cluster

FPGA Stepper Control Bundle

Control Mode

Enable

Reset Position to 0

Half-Step Time (ticks)

Commanded Position (steps)

0

Enable

Velocity Control

0

 True

Heartbeat

200

Heartbeat

FPGA Stepper Output

Error (steps)

Current Position (steps)

fpgasotemplate

Step

Wait #ticks

2

 True

Direction

FPGA Stepper Output

Over Temperature Fault

Drive Fault

Vsup Present

Drive Status

3.

DCS1 Status Cluster OUT

DC Servo 1 Control

PWM

DCS1 Drive Control Cluster

DCS1 Speed

DCS1 Go

Clockwise

Counterclockwise

If True, Read
a new speed
value else use
old

0

2000

Read Speed

Old Speed Value

2000 ticks=
20 kHz

Number of ticks
for this cycle

DCS1 Reset Position

DCS1 Reset Position Value

non-reset counts

0

0

1

-1

 True

DCS1 Reset Position

DCS1 Reset Position Value

DCS1 Index (Z) Position

 True

DCS1 Counts (no reset)

DCS1 Encoder Position

DCS1 Ticks/CountTime between Encoder Counts

Tick Count at Last Encoder count

Encoder Position

non-reset counts

Read the encoder phase values

Count Case

 True

DCS2 Reset Position Value

non-reset counts

Read the encoder phase values

Count Case

DCS1 Index (Z) Position

DCS1 Counts (no reset)

DCS1 Encoder Position

DCS1 Ticks/Count

DCS2 Index (Z) Position

 True

Count Case

DC Servo 2 Control

Analog

DCS2 Drive Control Cluster

DCS2 Go

DCS2 Speed

2.5

DC Servo 2 Control

Analog

5

5

0

0

1

-1

DCS2 Reset Position

DCS2 Reset Position Value

Time between Encoder Counts

Tick Count at Last Encoder count

Encoder Position0

0

DCS2 Counts (no reset)

DCS2 Encoder Position

DCS2 Ticks/Count

	Gorasia Actuation and Control Lab
	Table of Figures
	Executive Summary
	Summary of Readings
	Software Systems Overview
	Main Code
	RC Servo motor
	Stepper motor
	DC Servo Motor 1 (Digital Control)
	DC Servo Motor 2 (Analog Control)

	Supporting Vis for DC Servomotors
	Testing
	Conclusions
	Revised Lab Writeup
	Appendix

	Gorasia Actuation Lab Appendix
	Gorasia Bravo Appendix
	3
	2
	4

