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EXECUTIVE SUMMARY 

We developed a control system for four different motors in this lab, a digital DC motor, a stepper motor, an analog 
DC motor and a RC servo motor. Since we used a single board RIO as our controller, we had access to two real time 
operating systems, on the PowerPC and a FPGA. This gave us the ability to have accurate high speed control of the 
motors, and make precise closed loop control schemes. While the motors needed to be interfaced to in different 
ways, they can be abstracted out to be identical. Doing so makes it trivial to control all motors, and make them do 
things like sway in unison, or play music. 



SUMMARY OF READINGS 

Actuation and control is very important to mobile robotics. If robots are going to have any actuators, these need to 
be controlled.  In this lab, we are granted specialized hardware to better accomplish this, the Single Board RIO.  

The single board RIO consists of a PowerPC chip, a FPGA and many interchangeable modules. The advantage of 
using the Single Board RIO is that it is a real time operating system. That means that we can better predict and 
control the execution of operations on the computer. This is important in a physical system, as we want to control 
the physical systems precisely in time. 

While both the PowerPC and the FPGA operate in real time, the FPGA operates much faster than the PowerPC at 
certain operations. The FPGA is software reconfigurable hardware which means we can shape hardware with 
software into highly optimized structures for certain operations. While this means that the FPGA is limited in the 
operations it can perform (it can’t do floating point math) it is very good at what it does. Therefore, by using the 
PowerPC and FPGA together, it is possible to design a very computationally efficient method for controlling 
motors. 

SOFTWARE SYSTEMS OVERVIEW 

The code can be broadly divided in two: code running on the FPGA, and code running on the PowerPC. Vis running 
on the FPGA will be referred to as chips, while Vis running on the PowerPC will be referred to as sub-Vis.  

MAIN CODE 

The main code is a combination of all the code for the four different motors. It was developed by independent 
teams then pieced together to make the main code. Therefore, the main code can be easily grouped in bands. 



 

 

Figure 1: Main motor block diagram. This is a huge VI which is divided into bands for separate motors. 

The main VI gives the possibility of controlling the all four motors together or individually. In addition, a sway 
command was implemented to make the motors oscillate with a configurable period, amplitude and offset. 
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How the individual motors are controlled is described in the next few sections. 

RC SERVO MOTOR  

The RC servo motor is controlled through a Lynxmotion SSC-32 servo controller. The controller takes in a serial 
command input which it interprets to control up to 32 servo motors simultaneously.  

 

Figure 2: The block diagram for the RC servo motor. This packages the string to be sent via serial to the SSC 32 motor controller. Inputs from 
the front panel are scaled from degrees to the appropriate values for the motor controller to use. 

The command string for the controller follows the following format: 

# <ch> P <pw> S <spd> ... # <ch> P <pw> S <spd> T <time> <cr> 

Example: "#0 P1600 S750 <cr>" 

From the user manual:  
• "<ch>  Channel number in decimal, 0-31 



• <pw>  Pulse width in microseconds, 500-2500 
• <spd>  Movement speed in uS per second for one channel (Optional) 
• <time>  Time in mS for the wntire move, affects all channels, 65535 max (Optional) 
• <cr>  Carriage return character, ASCII 13 (Required to initiate action) 
• <esc>  Cancel the current action, ASCII 27" 

For us, the channel number used was 0 since there was only one servo motor. The pulse <pw> was a value from 
615 to 2350.  By scaling the pulse width to the corresponding position of the motor in degrees, we found that 0 
degrees corresponds to a pulse width of 615 and 180 degrees to a pulse width of 2350.  The rest of the positions 
varied linearly within this range. The speed <spd> was determined in the same fashion, giving a speed of 180 
degrees per second with a value of 1735.  

A note from the user manual1

 

 was that the first positioning command should be "# <ch> P <pw>". This allows the 
controller to learn where the servo is positioned on power up. If this step is ignored, speed and time commands 
will be ignored by the controller. Thus we created a button to send this default string. 

Figure 3: Front panel for the RC servo motor. The initialize serial port command initializes the serial port, while the position and speed  are 
controlled in degrees. 

STEPPER MOTOR 

The stepper is unique in this set of motors as it does not have position feedback. Therefore, it must keep track of 
its position by keeping count of the number of steps it has moved and make sure it does not skip steps. 

                                                             

1 http://www.lynxmotion.com/images/html/build136.htm#comform 



 

Figure 4: Front panel to control the Stepper motor 

 

The FPGA code is shown in Figure 5. The FPGA compare the stepper’s current position with the intended position 
and then steps in the appropriate direction that would close that difference. Since there is no encoder, the FPGA 
keeps track of the number of steps that it has commanded in a tally which is later used to determine the position 
of the motor. In addition, the motor also gets the time between steps, allowing it to do velocity control. 

Complication in the code arises because a few gotchas that needs to be accounted for. Firstly, the FPGA should 
only update its tally of number of steps when it actually sends a step command. Next, there is a feature to zero the 
stepper tally, to allow the position of the motor to be set. Finally, direction control is achieved by simple position 
control, comparing the desired position to the current position. There is also a control mode input, which gives 
either velocity control or position control. Velocity control is achieved by comparing the position to a known 
position and determining how past the stepper should have moved in the timestep. 



 

Figure 5: Chip for controlling the stepper motor. 

 

DC SERVO MOTOR 1 (DIGITAL CONTROL)  

DC Servo motor 1 (DCS1) is controlled through a NI 9505 motion control module. The module gives full H-bridge 
control of the DC motor. It also takes in the encoder inputs, allowing us to implement closed loop control of the 
motor.  

To control the motor, we pipe a PWM signal to the motion control module, and this is translated to an analog 
voltage to command the motor. 

Figure 6: Front Panel for DCS1 



The control on the FPGA for DCS1 consists of 4 chips: 

• Signal Enable / Disable 

• PWM pulse generator 

• Encoder reading 

Since DCS1 is controlled by a motion control module, it needs to be enabled before it can be used, as shown in 
Figure 7. 

 

Figure 7: DCS1 Enable and disable chip. DCS1 is controlled by a NI 9505 motion control module, which needs to be enabled before being 
used. Using the motion control module gives a few indicators to troubleshoot motor performance like drive faults, or over temperature 
faults.  

Next, a PWM signal needs to be generated to control the speed of the motor. Looking at the datasheet of the 
motion control module, it can take a 20kHz PWM signal, and modulate the speed of the motor based on the duty 
of the signal. To make the control easier, the PWM signal input, DCS1 speed, is allowed to range from -2000 to 
2000. This allows us to also insert the direction for the motor to travel to into the DCS1 input, as that is a separate 
control to the motion control module. The PWM signal works by incrementing two counters. One keeps track of 
the signal length while another keeps track of duty length. By incrementing the two counters appropriately, it is 
easy to create a PWM signal. 

 



 

Figure 8: DCS1 Control chip. This chip generates the PWM signal that drives DCS1, and controls the motor direction. 

Finally, the encoder position is determined using clever use of XOR logic gates and shift registers. The encoders 
consist of 3 separate rings: two of which are for relative positions, while the third is for absolute positioning. We 
can think of the encoders producing square wave signals. The number of counts of the square wave can be used to 
determine the relative position of the motor. On the other hand, the phase offset of Encoder A and Encoder B can 
be used to determine if the motor is spinning clockwise or counter clockwise.  

 

Figure 9: The encoder reading chip uses XOR gates and shift registers to convert the quadrature encoder signals into a motor direction and 
rotation count. The chip also keeps absolute position of the encoders, taking that responsibility off the PowerPC. In addition, the chip gives a 
time between encoder counts, which is useful to determine the velocity of the motor.  



 The diagram in Figure 10 helps explain how the chip in Figure 9 works.  

 

Figure 10: The shift registers are used to create a delay to the encoder signals. If the XOR of Encoder A or B and its shift register is true, the 
count increments. Finally, if the XOR of Encoder A and the shift register B is true, we know the motor is rotating clockwise and vice versa. 

DC SERVO MOTOR 2 (ANALOG CONTROL) 

DC Servo Motor 2 (DCS2) is very similar to DC Servo Motor 1. The main difference is that DC servo 2 is controlled 
by an analog voltage which is passed through a Sabertooth motor controller to control the motor. The encoder 
position is fed back to the PowerPC via digital IOs.  

 

Figure 11: Front panel for DC Servo 2. 



Since the wiring of DCS2 is simple, only a single chip is required to enable the motor and to control its speed. The 
motor will not move if sent a signal of 2.5V, while a signal above that will make it rotate clockwise, and a signal 
below that will make it rotate counter clockwise. This chip is shown in Figure 12. 

 

Figure 12: Enable and speed control chip for DCS2. It is a simple chip that keeps the output voltage between 0 and 5 volts. 

The encoder used for DCS2 was identical to DCS1, therefore the chip in Figure 9 was reused. 

SUPPORTING VIS FOR DC SERVOMOTORS 

On the PowerPC, we receive position in ticks from the DC motors, and we send either PWM duty signals or an 
analog voltage value to control the velocity of the motors. 

 

Figure 13: Ticks to degrees sub-VI. This takes the number of ticks moved coming from the encoder and scales it to degrees. 

To convert the tick values coming from the encoders to rotation values in degrees of the motors, we employ a 
modulus operator and linear scaling. Since the encoder is a quadrature encoder with 500 counts per revolution, 
and is connected to a 65.5:1 gear reduction, there will be 131000 counts per revolution of the output shaft. Taking 
the remainder of the cumulative number of ticks divided by 131000 will constrain the number of ticks between 0 
and 131000, a position in ticks. Finally, scaling this number will give the position of the output shaft in degrees. 



 

Figure 14: Position to velocity converter based on the change in position of the motor and the ticks per count value. 

Next, we have a sub-VI which uses the change in position of the motor and the sample tick rate to give the velocity 
of the motor. Interestingly, it does not use an accumulator for the tick rate to give time. Instead,  it simply reads 
the ticks per count value from the encoder, then resets the shift register that could be used to keep track of it. The 
false case for this VI simply passes values through.  

TESTING 

To create a control system, we needed to determine if the motor’s responded linearly to their input signals. 
Therefore, we tested DCS1 by sending it PWM signals of different duties, and determining the velocities of the 
motor. Using a stopwatch and eyeballing the rotation of the motors for several revolutions, we managed to get the 
graph in Figure 15. From the graph we can tell that the motor responds linearly to changes in duty, which makes 
controlling it easier.  



 

Figure 15: Velocity of DCS1 as a function of the PWM duty. This chart compares the measured angular velocity in degrees per second to the 
inputted PWM duty cycle expressed in our internal control units consisting of vales between -1800 and 1800.  The response is very linear, 
with a correlation coefficient of over 99%.  However, there is a small dead zone around 0.  Though we did not try to quantify the extent, it is 
slightly visible in this graph.   

The other motors were tested in similar ways, by eyeballing the speeds and making sure they matched up. For 
DCS1 and the stepper motor, we used the physical dials to make sure that the motor was moving to the positions 
we thought it was supposed to. 

Through testing we learned that we could make the stepper motor run at about 700 RPM. This made it possible for 
us to produce audible notes, which we then utilized to produce music.  

CONCLUSIONS 

Using the FPGA allowed us to have real time control over the motors which is important when dealing with a 
physical system like motors. We were lucky that all motors had very linear responses, making it trivial to develop a 
control schematic for them.  

Based on our experiences in this lab, the steps to control a motor can be summarized as: 

• Interface with the motor 

• Make the motor move 

• Determine the motor position  

• Test the response of the motor to different inputs. 
• Develop a control scheme. 

This plan worked well for this lab, and will be the method I use for future robotics projects. 
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REVISED LAB WRITEUP 

The lab handout is confusing, which is a function of having strange Vis in it that seems disparate. More work needs 
to be done to make the VIs flow better. 

In addition, the wiring schematic for DCS2 was completely wrong. The correct wiring is: 

• Encoder Phase A: Module 1-DIO4 
• Encoder Phase B: Module 1-DIO5 
• Encoder Index: Module 1-DIO6  
• AO0: Module 5-AO0 

APPENDIX 

Code is attached at the end of this document. 
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