Poster 312 Dan Greeley Ball and Plate System: Simulation and Design 2011

Goal: Design a system which balances a ball on a plate with

minimal transient response and the ability to reject noise

The Plant

$$\overline{L} = (r^2 + m)^{\chi} = mga$$

$$\cos \theta = \theta \qquad \qquad \frac{X(s)}{\theta(s)} = \frac{-mgd}{s^2 L\left(\frac{j}{r^2} + m\right)} = \frac{K_{plant}}{s^2}$$

Lead Compensation

 $L(s) = 1.6 \frac{10s + 1}{s^2(s + 1)}$ **Compensated Loop Transfer Function**

Verification

Goals Met

•Successfully balanced ball on plate •Transient lasts under 10 seconds •Successfully rejects noise

Model Accuracy

•All values used within an order of magnitude of simulation values

Sources of Error

•Image tracking

•Saturation

•Discrete angle positions

•Bending of the plate

•Model of servos