ENRG 3199A TURBINE FLOWMETER DESIGN SPRING 2010

Adaptation of a Camelbak flowmeter for measuring volumetric flowrates of 0.08 to 222 ml/s

Background:

- High velocity flowmeter required to measure flow rates in a research project.
- Existing flowmeters were too expensive.

Turbine Flowmeter chosen as:

- Low cost (<\$200)
- Robust against temperature fluctuations
- Easy to develop circuitry

Camelbak Flowmeter

Theory of Operation

Fluid flow causes turbine to rotate

Magnet in turbine trips a reed switch periodically as the turbine rotates

Voltage across reed switch is in the form of a square wave where the frequency is

Originally designed to provide hydration rate information for users of Camelbak's hydration packs

Signal leads giving the square wave input

Key Specifications		
Linearity:	Ripple Voltage:	Settling Time:
 Determined by operating range of the 	 Determined mainly by ratio of two capacitor values (C1 and C2) 	 Determined by value of C2. t_s is proportional to C2.

Circuit Design

LM2097-N IC

C2 = 10 uF

- Opamp used to amplify input signal
- Input signal sent through opamp in IC to normalize voltage
- Charge pump used to convert frequency to voltage
- Output opamp used to drive a floating transistor

$$V_{ripple} = \frac{V_{CC}}{2} \frac{C_1}{C_2} \left(1 - \frac{V_{cc} f_{IN} C1}{I_2} \right) \qquad R1 = 1M\Omega$$

$$V_0 = V_{CC} \times C1 \times R1 \times K \times f_{IN} \qquad C1 = 9.4nF$$

Calibrate input frequency against output voltage

Calibrate flow rates against output voltage

Output Voltage against Input Frequency

Output Voltage against Flow Rate

 $t_s \propto C2$

$V_{out}[mV] - 117.7$ ml39.5

Future work

- Develop mechanical assembly with lower starting flow rate
- Choose different circuitry which is more suited for low frequency signal measurement
- Develop more repeatable testing and calibration procedures

Acknowledgements: Thanks to Prof Kent Lundberg for his advice.